Spaces:
Sleeping
Sleeping
Update classifier.py
Browse files- classifier.py +7 -7
classifier.py
CHANGED
|
@@ -7,16 +7,16 @@ def classify(tweet, event_model, hftoken, threshold):
|
|
| 7 |
results = {"text": None, "event": None, "score": None}
|
| 8 |
|
| 9 |
# event type prediction with transformers pipeline
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
|
| 15 |
|
| 16 |
# with onnx pipeline
|
| 17 |
-
onnx_classifier = opipeline("text-classification", model=event_model, accelerator="ort",
|
| 18 |
-
|
| 19 |
-
prediction = onnx_classifier(tweet)[0]
|
| 20 |
|
| 21 |
|
| 22 |
results["text"] = tweet
|
|
|
|
| 7 |
results = {"text": None, "event": None, "score": None}
|
| 8 |
|
| 9 |
# event type prediction with transformers pipeline
|
| 10 |
+
event_predictor = tpipeline(task="text-classification", model=event_model,
|
| 11 |
+
batch_size=512, token=hftoken, device="cpu")
|
| 12 |
+
tokenizer_kwargs = {'padding': True, 'truncation': True, 'max_length': 512}
|
| 13 |
+
prediction = event_predictor(tweet, **tokenizer_kwargs)[0]
|
| 14 |
|
| 15 |
|
| 16 |
# with onnx pipeline
|
| 17 |
+
# onnx_classifier = opipeline("text-classification", model=event_model, accelerator="ort",
|
| 18 |
+
# batch_size=512, token=hftoken, device="cpu")
|
| 19 |
+
# prediction = onnx_classifier(tweet)[0]
|
| 20 |
|
| 21 |
|
| 22 |
results["text"] = tweet
|