Spaces:
Sleeping
Sleeping
Delete App.py
Browse files
App.py
DELETED
|
@@ -1,416 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from haystack.document_stores import FAISSDocumentStore
|
| 3 |
-
from haystack.nodes import EmbeddingRetriever
|
| 4 |
-
import openai
|
| 5 |
-
import pandas as pd
|
| 6 |
-
import os
|
| 7 |
-
from utils import (
|
| 8 |
-
make_pairs,
|
| 9 |
-
set_openai_api_key,
|
| 10 |
-
create_user_id,
|
| 11 |
-
to_completion,
|
| 12 |
-
)
|
| 13 |
-
|
| 14 |
-
from datetime import datetime
|
| 15 |
-
|
| 16 |
-
# from azure.storage.fileshare import ShareServiceClient
|
| 17 |
-
|
| 18 |
-
try:
|
| 19 |
-
from dotenv import load_dotenv
|
| 20 |
-
|
| 21 |
-
load_dotenv()
|
| 22 |
-
except:
|
| 23 |
-
pass
|
| 24 |
-
|
| 25 |
-
theme = gr.themes.Soft(
|
| 26 |
-
primary_hue="sky",
|
| 27 |
-
font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
|
| 28 |
-
)
|
| 29 |
-
|
| 30 |
-
init_prompt = (
|
| 31 |
-
"TKOQA, an AI Assistant for Tikehau. "
|
| 32 |
-
|
| 33 |
-
)
|
| 34 |
-
sources_prompt = (
|
| 35 |
-
"When relevant, use facts and numbers from the following documents in your answer. "
|
| 36 |
-
)
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
def get_reformulation_prompt(query: str) -> str:
|
| 40 |
-
return f"""Reformulate the following user message to be a short standalone question in English, in the context of the Universal Registration Document of Tikehau .
|
| 41 |
-
---
|
| 42 |
-
query: what is the AUM of Tikehau in 2022?
|
| 43 |
-
standalone question: What is the AUM of TIkehau in 2022?
|
| 44 |
-
language: English
|
| 45 |
-
---
|
| 46 |
-
query: what is T2?
|
| 47 |
-
standalone question: what is the transition energy fund at Tikehau?
|
| 48 |
-
language: English
|
| 49 |
-
---
|
| 50 |
-
query: what is the business of Tikehau?
|
| 51 |
-
standalone question: What are the main business units of Tikehau?
|
| 52 |
-
language: English
|
| 53 |
-
---
|
| 54 |
-
query: {query}
|
| 55 |
-
standalone question:"""
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
system_template = {
|
| 60 |
-
"role": "system",
|
| 61 |
-
"content": init_prompt,
|
| 62 |
-
}
|
| 63 |
-
|
| 64 |
-
# openai.api_type = "azure"
|
| 65 |
-
os.environ["OPENAI_API_KEY"] = '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'
|
| 66 |
-
openai.api_key = os.environ["OPENAI_API_KEY"]
|
| 67 |
-
|
| 68 |
-
# BHO
|
| 69 |
-
# openai.api_base = os.environ["ressource_endpoint"]
|
| 70 |
-
# openai.api_version = "2022-12-01"
|
| 71 |
-
|
| 72 |
-
document_store = FAISSDocumentStore()
|
| 73 |
-
|
| 74 |
-
ds = FAISSDocumentStore.load(index_path="./tko_urd.faiss", config_path="./tko_urd.json",)
|
| 75 |
-
|
| 76 |
-
retriever = EmbeddingRetriever(
|
| 77 |
-
document_store=ds,
|
| 78 |
-
embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
|
| 79 |
-
model_format="sentence_transformers",
|
| 80 |
-
progress_bar=False,
|
| 81 |
-
)
|
| 82 |
-
|
| 83 |
-
# retrieve_giec = EmbeddingRetriever(
|
| 84 |
-
# document_store=FAISSDocumentStore.load(
|
| 85 |
-
# index_path="./documents/climate_gpt_v2_only_giec.faiss",
|
| 86 |
-
# config_path="./documents/climate_gpt_v2_only_giec.json",
|
| 87 |
-
# ),
|
| 88 |
-
# embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
|
| 89 |
-
# model_format="sentence_transformers",
|
| 90 |
-
# )
|
| 91 |
-
|
| 92 |
-
# BHO
|
| 93 |
-
# For Azure connection in secrets in HuggingFace
|
| 94 |
-
# credential = {
|
| 95 |
-
# "account_key": os.environ["account_key"],
|
| 96 |
-
# "account_name": os.environ["account_name"],
|
| 97 |
-
# }
|
| 98 |
-
|
| 99 |
-
# BHO
|
| 100 |
-
# account_url = os.environ["account_url"]
|
| 101 |
-
# file_share_name = "climategpt"
|
| 102 |
-
# service = ShareServiceClient(account_url=account_url, credential=credential)
|
| 103 |
-
# share_client = service.get_share_client(file_share_name)
|
| 104 |
-
user_id = create_user_id(10)
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
def filter_sources(df, k_summary=3, k_total=10, source="ipcc"):
|
| 108 |
-
assert source in ["ipcc", "ipbes", "all"]
|
| 109 |
-
|
| 110 |
-
# Filter by source
|
| 111 |
-
if source == "ipcc":
|
| 112 |
-
df = df.loc[df["source"] == "IPCC"]
|
| 113 |
-
elif source == "ipbes":
|
| 114 |
-
df = df.loc[df["source"] == "IPBES"]
|
| 115 |
-
else:
|
| 116 |
-
pass
|
| 117 |
-
|
| 118 |
-
# Prepare summaries
|
| 119 |
-
df_summaries = df #.loc[df.loc.obj.values]
|
| 120 |
-
# Separate summaries and full reports
|
| 121 |
-
#df_summaries = df.loc[df["report_type"].isin(["SPM", "TS"])]
|
| 122 |
-
#df_full = df.loc[~df["report_type"].isin(["SPM", "TS"])]
|
| 123 |
-
|
| 124 |
-
# Find passages from summaries dataset
|
| 125 |
-
passages_summaries = df_summaries.head(k_summary)
|
| 126 |
-
|
| 127 |
-
# Find passages from full reports dataset
|
| 128 |
-
# passages_fullreports = df_full.head(k_total - len(passages_summaries))
|
| 129 |
-
|
| 130 |
-
# Concatenate passages
|
| 131 |
-
#passages = pd.concat([passages_summaries, passages_fullreports], axis=0, ignore_index=True)
|
| 132 |
-
passages = passages_summaries
|
| 133 |
-
return passages
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
def retrieve_with_summaries(query, retriever, k_summary=3, k_total=10, source="ipcc", max_k=100, threshold=0.555,
|
| 137 |
-
as_dict=True):
|
| 138 |
-
assert max_k > k_total
|
| 139 |
-
docs = retriever.retrieve(query, top_k=max_k)
|
| 140 |
-
docs = [{**x.meta, "score": x.score, "content": x.content} for x in docs if x.score > threshold]
|
| 141 |
-
if len(docs) == 0:
|
| 142 |
-
return []
|
| 143 |
-
res = pd.DataFrame(docs)
|
| 144 |
-
passages_df = filter_sources(res, k_summary, k_total, source)
|
| 145 |
-
if as_dict:
|
| 146 |
-
contents = passages_df["content"].tolist()
|
| 147 |
-
meta = passages_df.drop(columns=["content"]).to_dict(orient="records")
|
| 148 |
-
passages = []
|
| 149 |
-
for i in range(len(contents)):
|
| 150 |
-
passages.append({"content": contents[i], "meta": meta[i]})
|
| 151 |
-
return passages
|
| 152 |
-
else:
|
| 153 |
-
return passages_df
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
def make_html_source(source, i):
|
| 157 |
-
meta = source['meta']
|
| 158 |
-
return f"""
|
| 159 |
-
<div class="card">
|
| 160 |
-
<div class="card-content">
|
| 161 |
-
<h2>Doc {i} - {meta['file_name']} - Page {meta['page_number']}</h2>
|
| 162 |
-
<p>{source['content']}</p>
|
| 163 |
-
</div>
|
| 164 |
-
|
| 165 |
-
</div>
|
| 166 |
-
"""
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
def chat(
|
| 170 |
-
user_id: str,
|
| 171 |
-
query: str,
|
| 172 |
-
history: list = [system_template],
|
| 173 |
-
report_type: str = "All available",
|
| 174 |
-
threshold: float = 0.555,
|
| 175 |
-
) -> tuple:
|
| 176 |
-
"""retrieve relevant documents in the document store then query gpt-turbo
|
| 177 |
-
|
| 178 |
-
Args:
|
| 179 |
-
query (str): user message.
|
| 180 |
-
history (list, optional): history of the conversation. Defaults to [system_template].
|
| 181 |
-
report_type (str, optional): should be "All available" or "IPCC only". Defaults to "All available".
|
| 182 |
-
threshold (float, optional): similarity threshold, don't increase more than 0.568. Defaults to 0.56.
|
| 183 |
-
|
| 184 |
-
Yields:
|
| 185 |
-
tuple: chat gradio format, chat openai format, sources used.
|
| 186 |
-
"""
|
| 187 |
-
|
| 188 |
-
if report_type not in ["IPCC", "IPBES"]: report_type = "all"
|
| 189 |
-
print("Searching in ", report_type, " reports")
|
| 190 |
-
|
| 191 |
-
reformulated_query = openai.Completion.create(
|
| 192 |
-
engine="text-davinci-003",
|
| 193 |
-
prompt=get_reformulation_prompt(query),
|
| 194 |
-
temperature=0,
|
| 195 |
-
max_tokens=128,
|
| 196 |
-
stop=["\n---\n", "<|im_end|>"],
|
| 197 |
-
)
|
| 198 |
-
|
| 199 |
-
reformulated_query = reformulated_query["choices"][0]["text"]
|
| 200 |
-
reformulated_query, language = reformulated_query.split("\n")
|
| 201 |
-
language = language.split(":")[1].strip()
|
| 202 |
-
|
| 203 |
-
sources = retrieve_with_summaries(reformulated_query, retriever, k_total=10, k_summary=3, as_dict=True,
|
| 204 |
-
source=report_type.lower(), threshold=threshold)
|
| 205 |
-
response_retriever = {
|
| 206 |
-
"language": language,
|
| 207 |
-
"reformulated_query": reformulated_query,
|
| 208 |
-
"query": query,
|
| 209 |
-
"sources": sources,
|
| 210 |
-
}
|
| 211 |
-
|
| 212 |
-
# docs = [d for d in retriever.retrieve(query=reformulated_query, top_k=10) if d.score > threshold]
|
| 213 |
-
messages = history + [{"role": "user", "content": query}]
|
| 214 |
-
|
| 215 |
-
if len(sources) > 0:
|
| 216 |
-
docs_string = []
|
| 217 |
-
docs_html = []
|
| 218 |
-
for i, d in enumerate(sources, 1):
|
| 219 |
-
#docs_string.append(f"📃 Doc {i}: {d['meta']['short_name']} page {d['meta']['page_number']}\n{d['content']}")
|
| 220 |
-
docs_string.append(f"📃 Doc {i}: {d['meta']['file_name']} page {d['meta']['page_number']}\n{d['content']}")
|
| 221 |
-
docs_html.append(make_html_source(d, i))
|
| 222 |
-
docs_string = "\n\n".join([f"Query used for retrieval:\n{reformulated_query}"] + docs_string)
|
| 223 |
-
docs_html = "\n\n".join([f"Query used for retrieval:\n{reformulated_query}"] + docs_html)
|
| 224 |
-
messages.append({"role": "system", "content": f"{sources_prompt}\n\n{docs_string}\n\nAnswer in {language}:"})
|
| 225 |
-
|
| 226 |
-
response = openai.Completion.create(
|
| 227 |
-
# engine="climateGPT",
|
| 228 |
-
engine="text-davinci-003",
|
| 229 |
-
prompt=to_completion(messages),
|
| 230 |
-
temperature=0, # deterministic
|
| 231 |
-
stream=True,
|
| 232 |
-
max_tokens=1024,
|
| 233 |
-
)
|
| 234 |
-
|
| 235 |
-
complete_response = ""
|
| 236 |
-
messages.pop()
|
| 237 |
-
|
| 238 |
-
messages.append({"role": "assistant", "content": complete_response})
|
| 239 |
-
timestamp = str(datetime.now().timestamp())
|
| 240 |
-
file = user_id[0] + timestamp + ".json"
|
| 241 |
-
logs = {
|
| 242 |
-
"user_id": user_id[0],
|
| 243 |
-
"prompt": query,
|
| 244 |
-
"retrived": sources,
|
| 245 |
-
"report_type": report_type,
|
| 246 |
-
"prompt_eng": messages[0],
|
| 247 |
-
"answer": messages[-1]["content"],
|
| 248 |
-
"time": timestamp,
|
| 249 |
-
}
|
| 250 |
-
# log_on_azure(file, logs, share_client)
|
| 251 |
-
print(logs)
|
| 252 |
-
|
| 253 |
-
for chunk in response:
|
| 254 |
-
if (chunk_message := chunk["choices"][0].get("text")) and chunk_message != "<|im_end|>":
|
| 255 |
-
complete_response += chunk_message
|
| 256 |
-
messages[-1]["content"] = complete_response
|
| 257 |
-
gradio_format = make_pairs([a["content"] for a in messages[1:]])
|
| 258 |
-
yield gradio_format, messages, docs_html
|
| 259 |
-
|
| 260 |
-
else:
|
| 261 |
-
docs_string = "⚠️ No relevant passages found in the URDs"
|
| 262 |
-
complete_response = "**⚠️ No relevant passages found in the URDs **"
|
| 263 |
-
messages.append({"role": "assistant", "content": complete_response})
|
| 264 |
-
gradio_format = make_pairs([a["content"] for a in messages[1:]])
|
| 265 |
-
yield gradio_format, messages, docs_string
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
def save_feedback(feed: str, user_id):
|
| 269 |
-
if len(feed) > 1:
|
| 270 |
-
timestamp = str(datetime.now().timestamp())
|
| 271 |
-
file = user_id[0] + timestamp + ".json"
|
| 272 |
-
logs = {
|
| 273 |
-
"user_id": user_id[0],
|
| 274 |
-
"feedback": feed,
|
| 275 |
-
"time": timestamp,
|
| 276 |
-
}
|
| 277 |
-
# log_on_azure(file, logs, share_client)
|
| 278 |
-
print(logs)
|
| 279 |
-
return "Feedback submitted, thank you!"
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
def reset_textbox():
|
| 283 |
-
return gr.update(value="")
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
# def log_on_azure(file, logs, share_client):
|
| 287 |
-
# file_client = share_client.get_file_client(file)
|
| 288 |
-
# file_client.upload_file(str(logs))
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
with gr.Blocks(title="TKO URD Q&A", css="style.css", theme=theme) as demo:
|
| 292 |
-
user_id_state = gr.State([user_id])
|
| 293 |
-
|
| 294 |
-
# Gradio
|
| 295 |
-
gr.Markdown("<h1><center>Tikehau Capital Q&A </center></h1>")
|
| 296 |
-
|
| 297 |
-
with gr.Row():
|
| 298 |
-
with gr.Column(scale=2):
|
| 299 |
-
chatbot = gr.Chatbot(elem_id="chatbot", label=" Tikehau Capital Q&A chatbot", show_label=False)
|
| 300 |
-
state = gr.State([system_template])
|
| 301 |
-
|
| 302 |
-
with gr.Row():
|
| 303 |
-
ask = gr.Textbox(
|
| 304 |
-
show_label=True,
|
| 305 |
-
placeholder="Ask here your Tikehau-related question and press enter",
|
| 306 |
-
).style(container=False)
|
| 307 |
-
#ask_examples_hidden = gr.Textbox(elem_id="hidden-message")
|
| 308 |
-
|
| 309 |
-
# examples_questions = gr.Examples(
|
| 310 |
-
# [
|
| 311 |
-
# "What is the AUM of Tikehau in 2022?",
|
| 312 |
-
# ],
|
| 313 |
-
# [ask_examples_hidden],
|
| 314 |
-
# examples_per_page=15,
|
| 315 |
-
#)
|
| 316 |
-
|
| 317 |
-
with gr.Column(scale=1, variant="panel"):
|
| 318 |
-
gr.Markdown("### Sources")
|
| 319 |
-
sources_textbox = gr.Markdown(show_label=False)
|
| 320 |
-
|
| 321 |
-
# dropdown_sources = gr.inputs.Dropdown(
|
| 322 |
-
# ["IPCC", "IPBES", "ALL"],
|
| 323 |
-
# default="ALL",
|
| 324 |
-
# label="Select reports",
|
| 325 |
-
# )
|
| 326 |
-
dropdown_sources = gr.State(["All"])
|
| 327 |
-
|
| 328 |
-
ask.submit(
|
| 329 |
-
fn=chat,
|
| 330 |
-
inputs=[
|
| 331 |
-
user_id_state,
|
| 332 |
-
ask,
|
| 333 |
-
state,
|
| 334 |
-
dropdown_sources
|
| 335 |
-
|
| 336 |
-
],
|
| 337 |
-
outputs=[chatbot, state, sources_textbox],
|
| 338 |
-
)
|
| 339 |
-
ask.submit(reset_textbox, [], [ask])
|
| 340 |
-
|
| 341 |
-
# ask_examples_hidden.change(
|
| 342 |
-
# fn=chat,
|
| 343 |
-
# inputs=[
|
| 344 |
-
# user_id_state,
|
| 345 |
-
# ask_examples_hidden,
|
| 346 |
-
# state,
|
| 347 |
-
# dropdown_sources
|
| 348 |
-
# ],
|
| 349 |
-
# outputs=[chatbot, state, sources_textbox],
|
| 350 |
-
# )
|
| 351 |
-
|
| 352 |
-
with gr.Row():
|
| 353 |
-
with gr.Column(scale=1):
|
| 354 |
-
gr.Markdown(
|
| 355 |
-
"""
|
| 356 |
-
<div class="warning-box">
|
| 357 |
-
Version 0.1-beta - This tool is under active development
|
| 358 |
-
</div>
|
| 359 |
-
|
| 360 |
-
"""
|
| 361 |
-
)
|
| 362 |
-
|
| 363 |
-
with gr.Column(scale=1):
|
| 364 |
-
gr.Markdown("*Source : Tikehau Universal Registration Documents *")
|
| 365 |
-
|
| 366 |
-
gr.Markdown("## How to use TKO URD Q&A")
|
| 367 |
-
with gr.Row():
|
| 368 |
-
with gr.Column(scale=1):
|
| 369 |
-
gr.Markdown(
|
| 370 |
-
"""
|
| 371 |
-
### 💪 Getting started
|
| 372 |
-
- In the chatbot section, simply type your Tikehau-related question, answers will be provided with references to relevant URDs.
|
| 373 |
-
"""
|
| 374 |
-
)
|
| 375 |
-
with gr.Column(scale=1):
|
| 376 |
-
gr.Markdown(
|
| 377 |
-
"""
|
| 378 |
-
### ⚠️ Limitations
|
| 379 |
-
<div class="warning-box">
|
| 380 |
-
<ul>
|
| 381 |
-
<li>Please note that, like any AI, the model may occasionally generate an inaccurate or imprecise answer.</li>
|
| 382 |
-
</div>
|
| 383 |
-
"""
|
| 384 |
-
)
|
| 385 |
-
|
| 386 |
-
gr.Markdown("## 🙏 Feedback and feature requests")
|
| 387 |
-
gr.Markdown(
|
| 388 |
-
"""
|
| 389 |
-
### Beta test
|
| 390 |
-
- Feedback welcome.
|
| 391 |
-
"""
|
| 392 |
-
)
|
| 393 |
-
|
| 394 |
-
gr.Markdown(
|
| 395 |
-
"""
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
## 🛢️ Carbon Footprint
|
| 399 |
-
|
| 400 |
-
Carbon emissions were measured during the development and inference process using CodeCarbon [https://github.com/mlco2/codecarbon](https://github.com/mlco2/codecarbon)
|
| 401 |
-
|
| 402 |
-
| Phase | Description | Emissions | Source |
|
| 403 |
-
| --- | --- | --- | --- |
|
| 404 |
-
| Inference | API call to turbo-GPT | ~0.38gCO2e / call | https://medium.com/@chrispointon/the-carbon-footprint-of-chatgpt-e1bc14e4cc2a |
|
| 405 |
-
|
| 406 |
-
Carbon Emissions are **relatively low but not negligible** compared to other usages: one question asked to ClimateQ&A is around 0.482gCO2e - equivalent to 2.2m by car (https://datagir.ademe.fr/apps/impact-co2/)
|
| 407 |
-
Or around 2 to 4 times more than a typical Google search.
|
| 408 |
-
|
| 409 |
-
</b>.
|
| 410 |
-
|
| 411 |
-
"""
|
| 412 |
-
)
|
| 413 |
-
|
| 414 |
-
demo.queue(concurrency_count=16)
|
| 415 |
-
|
| 416 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|