Spaces:
Runtime error
Runtime error
| # ------------------------------------------------------------------------ | |
| # Copyright (c) 2023-present, BAAI. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ------------------------------------------------------------------------ | |
| """Mask utilities.""" | |
| import numpy as np | |
| from pycocotools.mask import encode | |
| def mask_to_box(mask): | |
| """Convert binary masks to boxes.""" | |
| shape, (h, w) = mask.shape, mask.shape[-2:] | |
| masks = mask.reshape((-1, h, w)).astype("bool") | |
| in_height = np.max(masks, axis=-1) | |
| in_width = np.max(masks, axis=-2) | |
| in_height_coords = in_height * np.arange(h, dtype="int32") | |
| in_width_coords = in_width * np.arange(w, dtype="int32") | |
| bottom_edges = np.max(in_height_coords, axis=-1) | |
| top_edges = np.min(in_height_coords + h * (~in_height), axis=-1) | |
| right_edges = np.max(in_width_coords, axis=-1) | |
| left_edges = np.min(in_width_coords + w * (~in_width), axis=-1) | |
| is_empty = (right_edges < left_edges) | (bottom_edges < top_edges) | |
| boxes = np.stack([left_edges, top_edges, right_edges, bottom_edges], axis=-1) | |
| boxes = boxes.astype("float32") * ((~is_empty)[:, None]) | |
| return boxes.reshape(*shape[:-2], 4) if len(shape) > 2 else boxes[0] | |
| def encode_masks(masks): | |
| """Encode a set of masks to RLEs.""" | |
| rles = encode(np.asfortranarray(masks)) | |
| for rle in rles: | |
| rle["counts"] = rle["counts"].decode() | |
| return rles | |