Spaces:
Runtime error
Runtime error
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # Source from: https://github.com/facebookresearch/llama/blob/main/llama/tokenizer.py | |
| import os | |
| from logging import getLogger | |
| from typing import List | |
| from sentencepiece import SentencePieceProcessor | |
| logger = getLogger() | |
| class TextTokenizer: | |
| """Tokenizing and encoding/decoding text using SentencePiece.""" | |
| def __init__(self, model_path=None): | |
| """ | |
| Initializes the Tokenizer with a SentencePiece model. | |
| Args: | |
| model_path (str): The path to the SentencePiece model file. | |
| """ | |
| if model_path is None: | |
| model_path = os.path.join( | |
| os.path.dirname(os.path.abspath(__file__)), "text_tokenizer.model" | |
| ) | |
| # reload tokenizer | |
| assert os.path.isfile(model_path), model_path | |
| self.sp_model = SentencePieceProcessor(model_file=model_path) | |
| logger.info(f"Reloaded SentencePiece model from {model_path}") | |
| # BOS / EOS token IDs | |
| self.n_words: int = self.sp_model.vocab_size() | |
| self.bos_id: int = self.sp_model.bos_id() | |
| self.eos_id: int = self.sp_model.eos_id() | |
| self.pad_id: int = self.sp_model.pad_id() | |
| self.pad_id += self.n_words if self.pad_id < 0 else 0 | |
| logger.info(f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}") | |
| assert self.sp_model.vocab_size() == self.sp_model.get_piece_size() | |
| def encode(self, s: str, bos: bool, eos: bool) -> List[int]: | |
| """ | |
| Encodes a string into a list of token IDs. | |
| Args: | |
| s (str): The input string to be encoded. | |
| bos (bool): Whether to prepend the beginning-of-sequence token. | |
| eos (bool): Whether to append the end-of-sequence token. | |
| Returns: | |
| List[int]: A list of token IDs. | |
| """ | |
| assert type(s) is str | |
| t = self.sp_model.encode(s) | |
| if bos: | |
| t = [self.bos_id] + t | |
| if eos: | |
| t = t + [self.eos_id] | |
| return t | |
| def decode(self, t: List[int]) -> str: | |
| """ | |
| Decodes a list of token IDs into a string. | |
| Args: | |
| t (List[int]): The list of token IDs to be decoded. | |
| Returns: | |
| str: The decoded string. | |
| """ | |
| return self.sp_model.decode(t) | |
| def tokenize(self, texts, context_length=None): | |
| """Encode a list of string. | |
| Parameters | |
| ---------- | |
| texts : Union[str, List[str]] | |
| The input text(s). | |
| context_length : int, optional | |
| The max token length. | |
| Returns | |
| ------- | |
| List[List[int]] | |
| The encoded token indices. | |
| """ | |
| if isinstance(texts, str): | |
| texts = [texts] | |
| tokens = [self.encode(text, bos=True, eos=True) for text in texts] | |
| if context_length is None: | |
| return tokens | |
| truncated_tokens = [] | |
| for k, t in enumerate(tokens): | |
| if len(t) > context_length: | |
| t = t[:context_length] | |
| t[-1] = self.eos_id | |
| truncated_tokens.append(t) | |
| return truncated_tokens | |
| def detokenize(self, tokens): | |
| """Decode a list of string. | |
| Parameters | |
| ---------- | |
| tokens : Union[List[List[int]], numpy.ndarray] | |
| The input tokens. | |
| Returns | |
| ------- | |
| List[str] | |
| The decoded text strings. | |
| """ | |
| if hasattr(tokens, "tolist"): | |
| tokens = tokens.tolist() | |
| texts = [] | |
| for i in range(len(tokens)): | |
| t = tokens[i][1:] | |
| try: | |
| eot_idx = t.index(self.eos_id) | |
| t = t[:eot_idx] | |
| except ValueError: | |
| pass | |
| texts.append(self.decode(t)) | |
| return texts | |