File size: 3,782 Bytes
1db31b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169a997
 
 
1db31b3
 
 
 
 
 
 
 
 
 
169a997
27a57d1
169a997
 
1db31b3
169a997
1db31b3
 
 
 
 
 
 
 
 
169a997
1db31b3
169a997
 
 
271f7dc
1db31b3
 
271f7dc
1db31b3
 
 
 
 
 
1b3a9d6
271f7dc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os
from PIL import Image
import torch
import gradio as gr
import torch
torch.backends.cudnn.benchmark = True
from torchvision import transforms, utils
from util import *
from PIL import Image
import math
import random
import numpy as np
from torch import nn, autograd, optim
from torch.nn import functional as F
from tqdm import tqdm
import lpips
from model import *
from copy import deepcopy
import imageio

import os
import sys
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as transforms
from argparse import Namespace
from e4e.models.psp import pSp
from util import *
from huggingface_hub import hf_hub_download

device= 'cpu'
model_path_e = hf_hub_download(repo_id="akhaliq/JoJoGAN_e4e_ffhq_encode", filename="e4e_ffhq_encode.pt")
ckpt = torch.load(model_path_e, map_location='cpu')
opts = ckpt['opts']
opts['checkpoint_path'] = model_path_e
opts= Namespace(**opts)
net = pSp(opts, device).eval().to(device)

@ torch.no_grad()
def projection(img, name, device='cuda'):

    transform = transforms.Compose(
        [
            transforms.Resize(256),
            transforms.CenterCrop(256),
            transforms.ToTensor(),
            transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
        ]
    )
    img = transform(img).unsqueeze(0).to(device)
    images, w_plus = net(img, randomize_noise=False, return_latents=True)
    result_file = {}
    result_file['latent'] = w_plus[0]
    torch.save(result_file, name)
    return w_plus[0]

device = 'cpu'

latent_dim = 512

model_path_s = hf_hub_download(repo_id="akhaliq/jojogan-stylegan2-ffhq-config-f", filename="stylegan2-ffhq-config-f.pt")
original_generator = Generator(1024, latent_dim, 8, 2).to(device)
ckpt = torch.load(model_path_s, map_location=lambda storage, loc: storage)
original_generator.load_state_dict(ckpt["g_ema"], strict=False)
mean_latent = original_generator.mean_latent(10000)


#MODELS
generatorzombie = deepcopy(original_generator)
generatorjojo = deepcopy(original_generator)

transform = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    ]
)


#ZOMBIE
modelzombie = hf_hub_download(repo_id="Awesimo/jojogan-zombie", filename="zombie.pt")
ckptzombie = torch.load(modelzombie, map_location=lambda storage, loc: storage)
generatorzombie.load_state_dict(ckptzombie["g"], strict=False)

#JOJO
modeljojo = hf_hub_download(repo_id="akhaliq/JoJoGAN-jojo", filename="jojo_preserve_color.pt")
ckptjojo = torch.load(modeljojo, map_location=lambda storage, loc: storage)
generatorjojo.load_state_dict(ckptjojo["g"], strict=False)

def inference(img, model):
    img.save('out.jpg')
    aligned_face = align_face('out.jpg')

    my_w = projection(aligned_face, "test.pt", device).unsqueeze(0)
    if model == 'Zombie':
        with torch.no_grad():
            my_sample = generatorzombie(my_w, input_is_latent=True)
    elif model == 'JoJo':
        with torch.no_grad():
            my_sample = generatorjojo(my_w, input_is_latent=True)
    else:
        with torch.no_grad():
            my_sample = generatorzombie(my_w, input_is_latent=True)


    npimage = my_sample[0].permute(1, 2, 0).detach().numpy()
    imageio.imwrite('filename.jpeg', npimage)
    return 'filename.jpeg'

title = "JoJoGAN Test 🤖"
examples=[['assets/samples/image01.jpg','Zombie'],['assets/samples/image02.jpg','JoJo'],['assets/samples/image03.jpg','Zombie'],['assets/samples/image04.jpg','JoJo']]
gr.Interface(inference, [gr.inputs.Image(type="pil"),gr.inputs.Dropdown(choices=['Zombie', 'JoJo'], type="value", default='Zombie', label="Model")], gr.outputs.Image(type="file"),title=title,allow_flagging=False,examples=examples,allow_screenshot=False).launch()