Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import shutil
|
| 3 |
+
import tkinter as tk # Not used in Gradio app, but kept for context if user reverts
|
| 4 |
+
from tkinter import filedialog, messagebox # Not used in Gradio app
|
| 5 |
+
import requests # Still imported, but not used for model inference
|
| 6 |
+
import time
|
| 7 |
+
|
| 8 |
+
# --- Hugging Face Transformers Imports ---
|
| 9 |
+
# You will need to install this library: pip install transformers torch gradio
|
| 10 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 11 |
+
|
| 12 |
+
# --- Gradio Imports ---
|
| 13 |
+
import gradio as gr
|
| 14 |
+
|
| 15 |
+
# CHANGED: Switched to yeniguno/bert-uncased-intent-classification for intent-based classification
|
| 16 |
+
print("Loading local intent classification model (yeniguno/bert-uncased-intent-classification)...")
|
| 17 |
+
tokenizer_intent = AutoTokenizer.from_pretrained("yeniguno/bert-uncased-intent-classification")
|
| 18 |
+
model_intent = AutoModelForSequenceClassification.from_pretrained("yeniguno/bert-uncased-intent-classification")
|
| 19 |
+
# Use a text-classification pipeline as the model is for text classification
|
| 20 |
+
classification_pipeline = pipeline("text-classification", model=model_intent, tokenizer=tokenizer_intent)
|
| 21 |
+
print("Intent classification model loaded successfully.")
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def classify_message_with_ai(message_content):
|
| 25 |
+
"""
|
| 26 |
+
Classifies a message as 'buyer' or 'seller' using the loaded local intent classification model.
|
| 27 |
+
|
| 28 |
+
Args:
|
| 29 |
+
message_content (str): The text content of the message to classify.
|
| 30 |
+
|
| 31 |
+
Returns:
|
| 32 |
+
str: 'buyer' or 'seller' based on intent mapping, or 'unclassified'.
|
| 33 |
+
"""
|
| 34 |
+
if not message_content:
|
| 35 |
+
return "Please provide some text to classify."
|
| 36 |
+
|
| 37 |
+
# Use the loaded intent classification pipeline
|
| 38 |
+
results = classification_pipeline(message_content)
|
| 39 |
+
# The result is a list of dictionaries, e.g., [{'label': 'product_inquiry', 'score': 0.99}]
|
| 40 |
+
intent = results[0]['label'].lower()
|
| 41 |
+
score = results[0]['score']
|
| 42 |
+
|
| 43 |
+
# --- Intent to Buyer/Seller Mapping Logic (CRITICAL: REVIEW AND ADJUST THIS) ---
|
| 44 |
+
# This is a **placeholder** mapping. You MUST define how intents map to buyer/seller roles
|
| 45 |
+
# based on the characteristics of your actual messages and the specific labels
|
| 46 |
+
# output by the 'yeniguno/bert-uncased-intent-classification' model.
|
| 47 |
+
|
| 48 |
+
# Example common intents and their likely roles (as defined in previous version):
|
| 49 |
+
buyer_intents = [
|
| 50 |
+
'information_seeking', 'product_inquiry', 'complaint', 'order_status',
|
| 51 |
+
'price_inquiry', 'availability_check', 'making_offer', 'general_query' # Added general_query as common buyer intent
|
| 52 |
+
]
|
| 53 |
+
seller_intents = [
|
| 54 |
+
'product_offering', 'promotion', 'transaction_confirmation',
|
| 55 |
+
'providing_details', 'listing_prices', 'delivery_update', 'greeting' # Added greeting as common seller intent
|
| 56 |
+
]
|
| 57 |
+
|
| 58 |
+
classification_result = "unclassified"
|
| 59 |
+
if intent in buyer_intents:
|
| 60 |
+
classification_result = 'buyer'
|
| 61 |
+
elif intent in seller_intents:
|
| 62 |
+
classification_result = 'seller'
|
| 63 |
+
|
| 64 |
+
# Return a more descriptive string for the Gradio interface
|
| 65 |
+
return f"Detected Intent: {intent.replace('_', ' ').title()} (Score: {score:.2f})\nClassification: {classification_result.upper()}"
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
# --- Gradio Interface ---
|
| 69 |
+
# Define the Gradio interface components
|
| 70 |
+
input_text = gr.Textbox(lines=5, label="Enter message text here:")
|
| 71 |
+
output_text = gr.Textbox(label="Classification Result")
|
| 72 |
+
|
| 73 |
+
# Create the Gradio interface
|
| 74 |
+
gr.Interface(
|
| 75 |
+
fn=classify_message_with_ai,
|
| 76 |
+
inputs=input_text,
|
| 77 |
+
outputs=output_text,
|
| 78 |
+
title="Buyer/Seller Message Classifier",
|
| 79 |
+
description="Enter a message to classify it as 'Buyer' or 'Seller' based on detected intent. Remember to adjust the mapping logic in the code for best results!"
|
| 80 |
+
).launch()
|
| 81 |
+
|
| 82 |
+
# The `organize_messages_by_type` function is removed as it's for local file system operations.
|
| 83 |
+
# You would not typically run a Gradio app directly from __main__ like the old script.
|
| 84 |
+
# When deployed to Hugging Face Spaces, the `app.py` or `run.py` file would simply contain
|
| 85 |
+
# the Gradio interface definition and its `.launch()` call.
|