File size: 12,313 Bytes
3ab16a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import gradio as gr
import torch
from diffusers import DiffusionPipeline
import numpy as np
import spaces
import time
from PIL import Image
import io
import base64

# Model configuration
MODEL_ID = "hpcai-tech/Open-Sora-v2"

# Initialize the pipeline
@spaces.GPU(duration=1500)
def load_model():
    """Load the Open-Sora-v2 model"""
    try:
        pipe = DiffusionPipeline.from_pretrained(
            MODEL_ID,
            torch_dtype=torch.float16,
            variant="fp16",
            use_safetensors=True
        )
        pipe.to("cuda")
        # Enable memory efficient attention
        pipe.enable_attention_slicing()
        return pipe
    except Exception as e:
        print(f"Error loading model: {e}")
        return None

# Global model variable
model = None

def initialize_model():
    """Initialize the model on first request"""
    global model
    if model is None:
        model = load_model()
    return model is not None

@spaces.GPU(duration=120)
def generate_video(
    prompt: str,
    duration: int = 4,
    height: int = 720,
    width: int = 1280,
    num_inference_steps: int = 50,
    guidance_scale: float = 7.5,
    progress=gr.Progress()
) -> str:
    """
    Generate a video from text prompt using Open-Sora-v2
    
    Args:
        prompt: Text description of the video
        duration: Duration in seconds
        height: Video height
        width: Video width
        num_inference_steps: Number of denoising steps
        guidance_scale: Guidance scale for generation
    
    Returns:
        Path to the generated video file
    """
    try:
        # Initialize model if not already done
        if not initialize_model():
            raise Exception("Failed to initialize model")
        
        progress(0.1, desc="Initializing generation...")
        
        # Calculate number of frames based on duration (assuming 30 fps)
        num_frames = duration * 30
        
        progress(0.2, desc="Starting video generation...")
        
        # Generate video frames
        result = model(
            prompt=prompt,
            num_frames=num_frames,
            height=height,
            width=width,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            generator=torch.Generator().manual_seed(42)
        )
        
        progress(0.8, desc="Processing frames...")
        
        # Save the generated video
        output_path = f"generated_video_{int(time.time())}.mp4"
        
        if hasattr(result, 'videos'):
            # Handle video output
            video_frames = result.videos[0]
        else:
            # Handle image sequence output
            video_frames = result.frames[0] if hasattr(result, 'frames') else result
        
        # Save as video file
        save_video(video_frames, output_path, fps=30)
        
        progress(1.0, desc="Video generation complete!")
        
        return output_path
        
    except Exception as e:
        print(f"Error generating video: {e}")
        raise gr.Error(f"Video generation failed: {str(e)}")

def save_video(frames, output_path, fps=30):
    """Save video frames to MP4 file"""
    try:
        import cv2
        
        # Convert frames to numpy if needed
        if torch.is_tensor(frames):
            frames = frames.cpu().numpy()
        
        # Ensure frames are in the correct format
        if len(frames.shape) == 4:
            frames = np.transpose(frames, (0, 2, 3, 1))  # TCHW -> THWC
        
        # Normalize frames to 0-255
        frames = ((frames + 1.0) * 127.5).astype(np.uint8)
        
        # Get video dimensions
        height, width = frames[0].shape[:2]
        
        # Initialize video writer
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
        
        # Write frames
        for frame in frames:
            if len(frame.shape) == 3:
                frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
            out.write(frame)
        
        out.release()
        
    except ImportError:
        # Fallback: save as GIF if cv2 is not available
        from PIL import Image
        
        if torch.is_tensor(frames):
            frames = frames.cpu().numpy()
        
        if len(frames.shape) == 4:
            frames = np.transpose(frames, (0, 2, 3, 1))
        
        frames = ((frames + 1.0) * 127.5).astype(np.uint8)
        
        images = [Image.fromarray(frame) for frame in frames]
        images[0].save(
            output_path.replace('.mp4', '.gif'),
            save_all=True,
            append_images=images[1:],
            duration=33,  # ~30 fps
            loop=0
        )

def create_interface():
    """Create the Gradio interface"""
    
    with gr.Blocks(
        title="Text to Video - Open-Sora-v2",
        theme=gr.themes.Soft(),
        css="""
        .header-text {
            text-align: center;
            font-size: 2em;
            margin-bottom: 0.5em;
            background: linear-gradient(45deg, #667eea 0%, #764ba2 100%);
            -webkit-background-clip: text;
            -webkit-text-fill-color: transparent;
        }
        .subheader-text {
            text-align: center;
            color: #666;
            margin-bottom: 2em;
        }
        .generate-btn {
            background: linear-gradient(45deg, #667eea 0%, #764ba2 100%);
            border: none;
            color: white;
            font-weight: bold;
        }
        .generate-btn:hover {
            background: linear-gradient(45deg, #764ba2 0%, #667eea 100%);
        }
        """
    ) as demo:
        
        gr.Markdown("""
        <div class="header-text">🎬 Text to Video Generator</div>
        <div class="subheader-text">Powered by Open-Sora-v2 - Transform your ideas into stunning videos</div>
        <div style="text-align: center; margin-bottom: 1em;">
            <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color: #667eea; text-decoration: none;">
                Built with anycoder
            </a>
        </div>
        """)
        
        with gr.Row():
            with gr.Column(scale=2):
                prompt_input = gr.Textbox(
                    label="πŸ“ Describe your video",
                    placeholder="A beautiful sunset over the ocean with waves gently crashing on the shore, cinematic quality, 4K resolution...",
                    lines=4,
                    max_lines=6
                )
                
                with gr.Row():
                    duration_input = gr.Slider(
                        minimum=2,
                        maximum=16,
                        value=4,
                        step=2,
                        label="⏱️ Duration (seconds)"
                    )
                    
                    quality_input = gr.Dropdown(
                        choices=[
                            ("720p HD", 720),
                            ("1080p Full HD", 1080),
                            ("4K Ultra HD", 2160)
                        ],
                        value=720,
                        label="πŸŽ₯ Quality"
                    )
                
                with gr.Accordion("βš™οΈ Advanced Settings", open=False):
                    with gr.Row():
                        steps_input = gr.Slider(
                            minimum=20,
                            maximum=100,
                            value=50,
                            step=5,
                            label="πŸ”’ Inference Steps"
                        )
                        
                        guidance_input = gr.Slider(
                            minimum=1.0,
                            maximum=20.0,
                            value=7.5,
                            step=0.5,
                            label="🎯 Guidance Scale"
                        )
                
                generate_btn = gr.Button(
                    "πŸš€ Generate Video",
                    variant="primary",
                    size="lg",
                    elem_classes=["generate-btn"]
                )
            
            with gr.Column(scale=1):
                gr.Markdown("""
                ### πŸ’‘ Example Prompts
                
                - πŸŒ… "A serene mountain landscape at sunrise with golden light filtering through misty valleys"
                - πŸ™οΈ "A futuristic cyberpunk city at night with neon signs reflecting on wet streets"
                - 🌊 "Underwater coral reef with colorful tropical fish swimming in crystal clear water"
                - 🌳 "A magical enchanted forest with glowing mushrooms and fireflies at twilight"
                
                ### ⚑ Tips for Best Results
                
                - Be descriptive and specific
                - Include visual style (cinematic, realistic, anime, etc.)
                - Mention lighting and atmosphere
                - Specify camera angles if desired
                """)
        
        with gr.Row():
            video_output = gr.Video(
                label="🎬 Generated Video",
                visible=False
            )
            
            loading_info = gr.Markdown(
                "✨ Your video will appear here after generation",
                visible=True
            )
        
        # Example prompts
        example_prompts = [
            [
                "A beautiful sunset over the ocean with waves gently crashing on the shore, cinematic quality, warm golden lighting",
                4, 720, 50, 7.5
            ],
            [
                "A serene mountain landscape at sunrise with mist rolling over the valleys, golden light filtering through the clouds",
                4, 720, 50, 7.5
            ],
            [
                "A bustling city street at night with neon signs reflecting on wet pavement, cyberpunk aesthetic, blade runner style",
                4, 720, 50, 7.5
            ],
            [
                "Underwater coral reef with colorful fish swimming, sun rays penetrating through the water, national geographic documentary style",
                4, 720, 50, 7.5
            ]
        ]
        
        gr.Examples(
            examples=example_prompts,
            inputs=[prompt_input, duration_input, quality_input, steps_input, guidance_input],
            label="🎯 Try these examples",
            cache_examples=False
        )
        
        def generate_and_display(prompt, duration, quality, steps, guidance, progress=gr.Progress()):
            try:
                # Calculate width based on quality (16:9 aspect ratio)
                width_map = {720: 1280, 1080: 1920, 2160: 3840}
                width = width_map.get(quality, 1280)
                
                # Generate video
                video_path = generate_video(
                    prompt=prompt,
                    duration=duration,
                    height=quality,
                    width=width,
                    num_inference_steps=steps,
                    guidance_scale=guidance,
                    progress=progress
                )
                
                return {
                    video_output: gr.Video(value=video_path, visible=True),
                    loading_info: gr.Markdown(visible=False)
                }
                
            except Exception as e:
                return {
                    video_output: gr.Video(visible=False),
                    loading_info: gr.Markdown(f"❌ Error: {str(e)}", visible=True)
                }
        
        generate_btn.click(
            fn=generate_and_display,
            inputs=[prompt_input, duration_input, quality_input, steps_input, guidance_input],
            outputs=[video_output, loading_info],
            show_progress=True
        )
        
        # Initialize model on page load
        demo.load(
            fn=initialize_model,
            inputs=[],
            outputs=[],
            queue=False
        )
    
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(
        share=True,
        show_error=True,
        show_tips=True,
        queue=True
    )