Update app.py
Browse files
app.py
CHANGED
|
@@ -1,443 +1,84 @@
|
|
| 1 |
-
#
|
| 2 |
import os
|
| 3 |
-
import json
|
| 4 |
-
import logging
|
| 5 |
-
import gradio as gr
|
| 6 |
import pandas as pd
|
| 7 |
-
|
| 8 |
|
| 9 |
from tools.sql_tool import SQLTool
|
| 10 |
-
from tools.predict_tool import PredictTool
|
| 11 |
-
from tools.explain_tool import ExplainTool
|
| 12 |
-
from tools.report_tool import ReportTool
|
| 13 |
from tools.ts_preprocess import build_timeseries
|
| 14 |
-
from tools.ts_forecast_tool import TimeseriesForecastTool
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
logging.basicConfig(
|
| 21 |
-
level=logging.INFO,
|
| 22 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 23 |
-
)
|
| 24 |
-
logger = logging.getLogger(__name__)
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
DEFAULT_FORECAST_HORIZON = 96
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 37 |
-
logger.info(f"Loading orchestrator model: {LLM_ID}")
|
| 38 |
-
_tok = AutoTokenizer.from_pretrained(LLM_ID)
|
| 39 |
-
_mdl = AutoModelForCausalLM.from_pretrained(LLM_ID)
|
| 40 |
-
llm = pipeline("text-generation", model=_mdl, tokenizer=_tok, max_new_tokens=512)
|
| 41 |
-
logger.info("Orchestrator model loaded successfully")
|
| 42 |
-
except Exception as e:
|
| 43 |
-
logger.warning(f"Failed to load orchestrator model: {e}. Using fallback planner.")
|
| 44 |
-
llm = None
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
tracer = Tracer.from_env()
|
| 50 |
-
|
| 51 |
-
sql_tool = SQLTool(cfg, tracer)
|
| 52 |
-
predict_tool = PredictTool(cfg, tracer)
|
| 53 |
-
explain_tool = ExplainTool(cfg, tracer)
|
| 54 |
-
report_tool = ReportTool(cfg, tracer)
|
| 55 |
-
ts_tool = TimeseriesForecastTool(cfg, tracer)
|
| 56 |
-
|
| 57 |
-
logger.info("All tools initialized successfully")
|
| 58 |
-
except Exception as e:
|
| 59 |
-
logger.error(f"Failed to initialize application: {e}")
|
| 60 |
-
raise
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
"Always disclose the steps taken."
|
| 67 |
-
)
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
def validate_message(message: str) -> Tuple[bool, str]:
|
| 71 |
-
"""Validate user input message."""
|
| 72 |
-
if not message or not message.strip():
|
| 73 |
-
return False, "Please enter a valid question."
|
| 74 |
-
|
| 75 |
-
if len(message) > MAX_RESPONSE_LENGTH:
|
| 76 |
-
return False, f"Message too long. Please limit to {MAX_RESPONSE_LENGTH} characters."
|
| 77 |
-
|
| 78 |
-
# Basic SQL injection pattern detection
|
| 79 |
-
suspicious_patterns = [
|
| 80 |
-
r';\s*drop\s+table',
|
| 81 |
-
r';\s*delete\s+from',
|
| 82 |
-
r';\s*truncate',
|
| 83 |
-
r'union\s+select.*from',
|
| 84 |
-
r'exec\s*\(',
|
| 85 |
-
r'execute\s*\('
|
| 86 |
-
]
|
| 87 |
-
|
| 88 |
-
import re
|
| 89 |
-
msg_lower = message.lower()
|
| 90 |
-
for pattern in suspicious_patterns:
|
| 91 |
-
if re.search(pattern, msg_lower):
|
| 92 |
-
logger.warning(f"Suspicious SQL pattern detected: {pattern}")
|
| 93 |
-
return False, "Query contains potentially unsafe patterns. Please rephrase."
|
| 94 |
-
|
| 95 |
-
return True, ""
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
|
| 99 |
-
"""
|
| 100 |
-
Determine which tools to execute based on the user message.
|
| 101 |
-
Uses LLM if available, otherwise falls back to heuristics.
|
| 102 |
-
"""
|
| 103 |
-
if llm is not None:
|
| 104 |
-
prompt = (
|
| 105 |
-
f"{SYSTEM_PROMPT}\nUser: {message}\n"
|
| 106 |
-
"Return JSON with fields: steps (array subset of ['sql','predict','explain','report','forecast']), rationale."
|
| 107 |
-
)
|
| 108 |
-
try:
|
| 109 |
-
out = llm(prompt)[0]["generated_text"]
|
| 110 |
-
last = out.split("\n")[-1].strip()
|
| 111 |
-
obj = json.loads(last) if last.startswith("{") else json.loads(out[out.rfind("{"):])
|
| 112 |
-
|
| 113 |
-
if isinstance(obj, dict) and "steps" in obj:
|
| 114 |
-
# Validate steps
|
| 115 |
-
valid_steps = {'sql', 'predict', 'explain', 'report', 'forecast'}
|
| 116 |
-
obj["steps"] = [s for s in obj["steps"] if s in valid_steps]
|
| 117 |
-
if obj["steps"]:
|
| 118 |
-
logger.info(f"LLM plan: {obj['steps']}")
|
| 119 |
-
return obj
|
| 120 |
-
except json.JSONDecodeError as e:
|
| 121 |
-
logger.warning(f"Failed to parse LLM output as JSON: {e}")
|
| 122 |
-
except Exception as e:
|
| 123 |
-
logger.warning(f"LLM planning failed: {e}")
|
| 124 |
-
|
| 125 |
-
# Fallback heuristic planning
|
| 126 |
-
m = message.lower()
|
| 127 |
-
steps = []
|
| 128 |
-
|
| 129 |
-
# SQL keywords
|
| 130 |
-
if any(k in m for k in ["show", "average", "count", "trend", "top", "sql", "query",
|
| 131 |
-
"kpi", "data", "retrieve", "fetch", "list", "view"]):
|
| 132 |
-
steps.append("sql")
|
| 133 |
-
|
| 134 |
-
# Prediction keywords
|
| 135 |
-
if any(k in m for k in ["predict", "score", "risk", "propensity", "probability",
|
| 136 |
-
"classification", "regression"]):
|
| 137 |
-
steps.append("predict")
|
| 138 |
-
if "sql" not in steps:
|
| 139 |
-
steps.insert(0, "sql") # Need data first
|
| 140 |
-
|
| 141 |
-
# Explanation keywords
|
| 142 |
-
if any(k in m for k in ["why", "explain", "shap", "feature", "attribution",
|
| 143 |
-
"importance", "interpret"]):
|
| 144 |
-
steps.append("explain")
|
| 145 |
-
if "predict" not in steps:
|
| 146 |
-
steps.insert(0, "predict")
|
| 147 |
-
if "sql" not in steps:
|
| 148 |
-
steps.insert(0, "sql")
|
| 149 |
-
|
| 150 |
-
# Report keywords
|
| 151 |
-
if any(k in m for k in ["report", "download", "pdf", "summary", "document", "export"]):
|
| 152 |
-
steps.append("report")
|
| 153 |
-
|
| 154 |
-
# Forecast keywords
|
| 155 |
-
if any(k in m for k in ["forecast", "next", "horizon", "granite", "predict future",
|
| 156 |
-
"time series", "timeseries"]):
|
| 157 |
-
steps.append("forecast")
|
| 158 |
-
if "sql" not in steps:
|
| 159 |
-
steps.insert(0, "sql")
|
| 160 |
-
|
| 161 |
-
# Default to SQL if no steps identified
|
| 162 |
-
if not steps:
|
| 163 |
-
steps = ["sql"]
|
| 164 |
-
|
| 165 |
-
rationale = f"Rule-based plan based on keywords: {', '.join(steps)}"
|
| 166 |
-
logger.info(f"Heuristic plan: {steps}")
|
| 167 |
-
return {"steps": steps, "rationale": rationale}
|
| 168 |
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
-
def run_agent(
|
| 171 |
-
message: str,
|
| 172 |
-
hitl_decision: str = "Approve",
|
| 173 |
-
reviewer_note: str = ""
|
| 174 |
-
) -> Tuple[str, pd.DataFrame]:
|
| 175 |
-
"""
|
| 176 |
-
Main agent execution function.
|
| 177 |
-
|
| 178 |
-
Args:
|
| 179 |
-
message: User query
|
| 180 |
-
hitl_decision: Human-in-the-loop decision
|
| 181 |
-
reviewer_note: Optional review notes
|
| 182 |
-
|
| 183 |
-
Returns:
|
| 184 |
-
Tuple of (response_text, preview_dataframe)
|
| 185 |
-
"""
|
| 186 |
try:
|
| 187 |
-
|
| 188 |
-
is_valid, error_msg = validate_message(message)
|
| 189 |
-
if not is_valid:
|
| 190 |
-
logger.warning(f"Invalid message: {error_msg}")
|
| 191 |
-
return f"❌ **Error:** {error_msg}", pd.DataFrame()
|
| 192 |
-
|
| 193 |
-
tracer.trace_event("user_message", {"message": message[:500]}) # Limit traced message length
|
| 194 |
-
|
| 195 |
-
# Plan actions
|
| 196 |
-
try:
|
| 197 |
-
plan = plan_actions(message)
|
| 198 |
-
tracer.trace_event("plan", plan)
|
| 199 |
-
except Exception as e:
|
| 200 |
-
logger.error(f"Planning failed: {e}")
|
| 201 |
-
return f"❌ **Planning Error:** Unable to create execution plan. {str(e)}", pd.DataFrame()
|
| 202 |
-
|
| 203 |
-
# Initialize result containers
|
| 204 |
-
sql_df = None
|
| 205 |
-
predict_df = None
|
| 206 |
-
explain_imgs = {}
|
| 207 |
-
artifacts = {}
|
| 208 |
-
ts_forecast_df = None
|
| 209 |
-
errors = []
|
| 210 |
-
|
| 211 |
-
# Execute SQL step
|
| 212 |
-
if "sql" in plan["steps"]:
|
| 213 |
-
try:
|
| 214 |
-
sql_df = sql_tool.run(message)
|
| 215 |
-
if isinstance(sql_df, pd.DataFrame):
|
| 216 |
-
artifacts["sql_rows"] = len(sql_df)
|
| 217 |
-
logger.info(f"SQL returned {len(sql_df)} rows")
|
| 218 |
-
else:
|
| 219 |
-
errors.append("SQL query returned no data")
|
| 220 |
-
except Exception as e:
|
| 221 |
-
error_msg = f"SQL execution failed: {str(e)}"
|
| 222 |
-
logger.error(error_msg)
|
| 223 |
-
errors.append(error_msg)
|
| 224 |
-
|
| 225 |
-
# Execute prediction step
|
| 226 |
-
if "predict" in plan["steps"]:
|
| 227 |
-
try:
|
| 228 |
-
if sql_df is not None and not sql_df.empty:
|
| 229 |
-
predict_df = predict_tool.run(sql_df)
|
| 230 |
-
if isinstance(predict_df, pd.DataFrame):
|
| 231 |
-
artifacts["predict_rows"] = len(predict_df)
|
| 232 |
-
logger.info(f"Predictions generated for {len(predict_df)} rows")
|
| 233 |
-
else:
|
| 234 |
-
errors.append("Prediction skipped: no data available")
|
| 235 |
-
except Exception as e:
|
| 236 |
-
error_msg = f"Prediction failed: {str(e)}"
|
| 237 |
-
logger.error(error_msg)
|
| 238 |
-
errors.append(error_msg)
|
| 239 |
-
|
| 240 |
-
# Build time series if possible
|
| 241 |
-
ts_df = None
|
| 242 |
-
if sql_df is not None and not sql_df.empty:
|
| 243 |
-
try:
|
| 244 |
-
ts_df = build_timeseries(sql_df)
|
| 245 |
-
logger.info(f"Time series built with {len(ts_df)} records")
|
| 246 |
-
except Exception as e:
|
| 247 |
-
logger.info(f"Time series preprocessing skipped: {e}")
|
| 248 |
-
# Not always an error - data might not be suitable for TS
|
| 249 |
-
|
| 250 |
-
# Execute forecast step
|
| 251 |
-
if "forecast" in plan["steps"]:
|
| 252 |
-
if ts_df is not None and not ts_df.empty:
|
| 253 |
-
try:
|
| 254 |
-
# Aggregate portfolio value by timestamp
|
| 255 |
-
agg = ts_df.groupby("timestamp", as_index=True)["portfolio_value"].sum().sort_index()
|
| 256 |
-
|
| 257 |
-
if len(agg) < 2:
|
| 258 |
-
errors.append("Insufficient time series data for forecasting (need at least 2 points)")
|
| 259 |
-
else:
|
| 260 |
-
# Validate horizon
|
| 261 |
-
horizon = min(DEFAULT_FORECAST_HORIZON, MAX_FORECAST_HORIZON)
|
| 262 |
-
ts_forecast_df = ts_tool.zeroshot_forecast(agg, horizon=horizon)
|
| 263 |
-
|
| 264 |
-
if isinstance(ts_forecast_df, pd.DataFrame):
|
| 265 |
-
if "error" in ts_forecast_df.columns:
|
| 266 |
-
errors.append(f"Forecast error: {ts_forecast_df['error'].iloc[0]}")
|
| 267 |
-
ts_forecast_df = None
|
| 268 |
-
else:
|
| 269 |
-
artifacts["forecast_horizon"] = len(ts_forecast_df)
|
| 270 |
-
logger.info(f"Forecast generated for {len(ts_forecast_df)} periods")
|
| 271 |
-
except Exception as e:
|
| 272 |
-
error_msg = f"Forecasting failed: {str(e)}"
|
| 273 |
-
logger.error(error_msg)
|
| 274 |
-
errors.append(error_msg)
|
| 275 |
-
else:
|
| 276 |
-
errors.append("Forecast skipped: no suitable time series data")
|
| 277 |
-
|
| 278 |
-
# Execute explanation step
|
| 279 |
-
if "explain" in plan["steps"]:
|
| 280 |
-
try:
|
| 281 |
-
explain_data = predict_df if predict_df is not None else sql_df
|
| 282 |
-
if explain_data is not None and not explain_data.empty:
|
| 283 |
-
explain_imgs = explain_tool.run(explain_data)
|
| 284 |
-
artifacts["explain_charts"] = len(explain_imgs)
|
| 285 |
-
logger.info(f"Generated {len(explain_imgs)} explanation charts")
|
| 286 |
-
else:
|
| 287 |
-
errors.append("Explanation skipped: no data available")
|
| 288 |
-
except Exception as e:
|
| 289 |
-
error_msg = f"Explanation failed: {str(e)}"
|
| 290 |
-
logger.error(error_msg)
|
| 291 |
-
errors.append(error_msg)
|
| 292 |
-
|
| 293 |
-
# Execute report generation
|
| 294 |
-
report_link = None
|
| 295 |
-
if "report" in plan["steps"]:
|
| 296 |
-
try:
|
| 297 |
-
forecast_preview = ts_forecast_df.head(50) if isinstance(ts_forecast_df, pd.DataFrame) else None
|
| 298 |
-
report_link = report_tool.render_and_save(
|
| 299 |
-
user_query=message,
|
| 300 |
-
sql_preview=sql_df.head(50) if isinstance(sql_df, pd.DataFrame) else None,
|
| 301 |
-
predict_preview=predict_df.head(50) if isinstance(predict_df, pd.DataFrame) else forecast_preview,
|
| 302 |
-
explain_images=explain_imgs,
|
| 303 |
-
plan=plan,
|
| 304 |
-
)
|
| 305 |
-
logger.info(f"Report generated: {report_link}")
|
| 306 |
-
except Exception as e:
|
| 307 |
-
error_msg = f"Report generation failed: {str(e)}"
|
| 308 |
-
logger.error(error_msg)
|
| 309 |
-
errors.append(error_msg)
|
| 310 |
-
|
| 311 |
-
# Log human-in-the-loop decision
|
| 312 |
-
tracer.trace_event("hitl", {
|
| 313 |
-
"message": message[:500],
|
| 314 |
-
"decision": hitl_decision,
|
| 315 |
-
"reviewer_note": reviewer_note[:500] if reviewer_note else "",
|
| 316 |
-
"artifacts": artifacts,
|
| 317 |
-
"plan": plan,
|
| 318 |
-
"errors": errors,
|
| 319 |
-
})
|
| 320 |
-
|
| 321 |
-
# Compose response
|
| 322 |
-
response = f"**Plan:** {', '.join(plan['steps'])}\n\n**Rationale:** {plan['rationale']}\n\n"
|
| 323 |
-
|
| 324 |
-
# Add artifacts info
|
| 325 |
-
if artifacts:
|
| 326 |
-
response += "**Results:**\n"
|
| 327 |
-
if "sql_rows" in artifacts:
|
| 328 |
-
response += f"- SQL query returned {artifacts['sql_rows']} rows\n"
|
| 329 |
-
if "predict_rows" in artifacts:
|
| 330 |
-
response += f"- Generated predictions for {artifacts['predict_rows']} rows\n"
|
| 331 |
-
if "forecast_horizon" in artifacts:
|
| 332 |
-
response += f"- Forecast generated for {artifacts['forecast_horizon']} periods\n"
|
| 333 |
-
if "explain_charts" in artifacts:
|
| 334 |
-
response += f"- Created {artifacts['explain_charts']} explanation charts\n"
|
| 335 |
-
response += "\n"
|
| 336 |
-
|
| 337 |
-
# Add report link
|
| 338 |
-
if report_link:
|
| 339 |
-
response += f"📄 **Report:** {report_link}\n\n"
|
| 340 |
-
|
| 341 |
-
# Add trace URL
|
| 342 |
-
if tracer.trace_url:
|
| 343 |
-
response += f"🔍 **Trace:** {tracer.trace_url}\n\n"
|
| 344 |
-
|
| 345 |
-
# Add errors if any
|
| 346 |
-
if errors:
|
| 347 |
-
response += "**⚠️ Warnings/Errors:**\n"
|
| 348 |
-
for err in errors:
|
| 349 |
-
response += f"- {err}\n"
|
| 350 |
-
|
| 351 |
-
# Determine preview dataframe
|
| 352 |
-
if isinstance(ts_forecast_df, pd.DataFrame) and not ts_forecast_df.empty:
|
| 353 |
-
preview_df = ts_forecast_df.head(100)
|
| 354 |
-
elif isinstance(predict_df, pd.DataFrame) and not predict_df.empty:
|
| 355 |
-
preview_df = predict_df.head(100)
|
| 356 |
-
elif isinstance(sql_df, pd.DataFrame) and not sql_df.empty:
|
| 357 |
-
preview_df = sql_df.head(100)
|
| 358 |
-
else:
|
| 359 |
-
preview_df = pd.DataFrame({"message": ["No data to display"]})
|
| 360 |
-
|
| 361 |
-
return response, preview_df
|
| 362 |
-
|
| 363 |
except Exception as e:
|
| 364 |
-
|
| 365 |
-
logger.exception(error_msg)
|
| 366 |
-
tracer.trace_event("error", {"message": error_msg})
|
| 367 |
-
return f"❌ **Critical Error:** {error_msg}", pd.DataFrame()
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
# Gradio Interface
|
| 371 |
-
with gr.Blocks(title="Tabular Agentic XAI") as demo:
|
| 372 |
-
gr.Markdown("""
|
| 373 |
-
# 🤖 Tabular Agentic XAI (Enterprise Edition)
|
| 374 |
-
|
| 375 |
-
An intelligent assistant for analyzing tabular data with ML predictions, explanations, and time-series forecasting.
|
| 376 |
-
|
| 377 |
-
**Capabilities:**
|
| 378 |
-
- 📊 SQL queries and data retrieval
|
| 379 |
-
- 🎯 ML predictions with confidence scores
|
| 380 |
-
- 🔍 SHAP-based model explanations
|
| 381 |
-
- 📈 Time-series forecasting with Granite TTM
|
| 382 |
-
- 📄 Automated report generation
|
| 383 |
-
""")
|
| 384 |
-
|
| 385 |
-
with gr.Row():
|
| 386 |
-
msg = gr.Textbox(
|
| 387 |
-
label="Ask your question",
|
| 388 |
-
placeholder="e.g., Show me the top 10 customers by revenue, predict churn risk, forecast next quarter...",
|
| 389 |
-
lines=3
|
| 390 |
-
)
|
| 391 |
-
|
| 392 |
-
with gr.Row():
|
| 393 |
-
hitl = gr.Radio(
|
| 394 |
-
["Approve", "Needs Changes"],
|
| 395 |
-
value="Approve",
|
| 396 |
-
label="Human Review",
|
| 397 |
-
info="Review the planned actions before execution"
|
| 398 |
-
)
|
| 399 |
-
note = gr.Textbox(
|
| 400 |
-
label="Reviewer note (optional)",
|
| 401 |
-
placeholder="Add any review comments...",
|
| 402 |
-
lines=2
|
| 403 |
-
)
|
| 404 |
-
|
| 405 |
-
out_md = gr.Markdown(label="Response")
|
| 406 |
-
out_df = gr.Dataframe(
|
| 407 |
-
interactive=False,
|
| 408 |
-
label="Data Preview (max 100 rows)",
|
| 409 |
-
wrap=True
|
| 410 |
-
)
|
| 411 |
-
|
| 412 |
-
with gr.Row():
|
| 413 |
-
ask = gr.Button("🚀 Run Analysis", variant="primary")
|
| 414 |
-
clear = gr.Button("🔄 Clear")
|
| 415 |
-
|
| 416 |
-
ask.click(
|
| 417 |
-
run_agent,
|
| 418 |
-
inputs=[msg, hitl, note],
|
| 419 |
-
outputs=[out_md, out_df]
|
| 420 |
-
)
|
| 421 |
-
|
| 422 |
-
clear.click(
|
| 423 |
-
lambda: ("", "Approve", "", "", pd.DataFrame()),
|
| 424 |
-
outputs=[msg, hitl, note, out_md, out_df]
|
| 425 |
-
)
|
| 426 |
-
|
| 427 |
-
gr.Markdown("""
|
| 428 |
-
---
|
| 429 |
-
**Tips:**
|
| 430 |
-
- Be specific in your queries for better results
|
| 431 |
-
- Use natural language - the system will interpret your intent
|
| 432 |
-
- Review the execution plan before approving
|
| 433 |
-
- Check the trace link for detailed execution logs
|
| 434 |
-
""")
|
| 435 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 436 |
|
| 437 |
if __name__ == "__main__":
|
| 438 |
-
|
| 439 |
-
demo.launch(
|
| 440 |
-
server_name="0.0.0.0",
|
| 441 |
-
server_port=7860,
|
| 442 |
-
show_error=True
|
| 443 |
-
)
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
import os
|
|
|
|
|
|
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
+
import gradio as gr
|
| 5 |
|
| 6 |
from tools.sql_tool import SQLTool
|
|
|
|
|
|
|
|
|
|
| 7 |
from tools.ts_preprocess import build_timeseries
|
|
|
|
| 8 |
|
| 9 |
+
# Ensure DB path & defaults (you can set these in Space Settings → Variables)
|
| 10 |
+
DUCKDB_PATH = os.getenv("DUCKDB_PATH", "alm.duckdb")
|
| 11 |
+
DEFAULT_SCHEMA = os.getenv("SQL_DEFAULT_SCHEMA", "main")
|
| 12 |
+
DEFAULT_TABLE = os.getenv("SQL_DEFAULT_TABLE", "masterdataset_v")
|
| 13 |
|
| 14 |
+
sql_tool = SQLTool(DUCKDB_PATH)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
INTRO = f"""
|
| 17 |
+
### ALM LLM — Demo
|
| 18 |
+
Connected to **DuckDB** at `{DUCKDB_PATH}` using table **{DEFAULT_SCHEMA}.{DEFAULT_TABLE}**.
|
|
|
|
| 19 |
|
| 20 |
+
**Try:**
|
| 21 |
+
- *"show me the top 10 fds by portfolio value"*
|
| 22 |
+
- *"top 10 assets by portfolio value"*
|
| 23 |
+
- *"sum portfolio value by currency"*
|
| 24 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
def run_nl(nl_query: str):
|
| 27 |
+
if not nl_query or not nl_query.strip():
|
| 28 |
+
return pd.DataFrame(), "", "Please enter a query.", pd.DataFrame(), pd.DataFrame()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
try:
|
| 31 |
+
df, sql, why = sql_tool.query_from_nl(nl_query)
|
| 32 |
+
except Exception as e:
|
| 33 |
+
return pd.DataFrame(), "", f"Error: {e}", pd.DataFrame(), pd.DataFrame()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
# Try to build timeseries cashflows + gap if columns match masterdataset_v
|
| 36 |
+
try:
|
| 37 |
+
cf, gap = build_timeseries(df)
|
| 38 |
+
except Exception as e:
|
| 39 |
+
cf, gap = pd.DataFrame(), pd.DataFrame()
|
| 40 |
|
| 41 |
+
return df, sql.strip(), why, cf, gap
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
def run_sql(sql_text: str):
|
| 44 |
+
if not sql_text or not sql_text.strip():
|
| 45 |
+
return pd.DataFrame(), "Please paste a SQL statement.", pd.DataFrame(), pd.DataFrame()
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
try:
|
| 48 |
+
df = sql_tool.run_sql(sql_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
except Exception as e:
|
| 50 |
+
return pd.DataFrame(), f"Error: {e}", pd.DataFrame(), pd.DataFrame()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
try:
|
| 53 |
+
cf, gap = build_timeseries(df)
|
| 54 |
+
except Exception:
|
| 55 |
+
cf, gap = pd.DataFrame(), pd.DataFrame()
|
| 56 |
+
return df, "OK", cf, gap
|
| 57 |
+
|
| 58 |
+
with gr.Blocks(title="ALM LLM") as demo:
|
| 59 |
+
gr.Markdown(INTRO)
|
| 60 |
+
|
| 61 |
+
with gr.Tab("Ask in Natural Language"):
|
| 62 |
+
nl = gr.Textbox(label="Ask a question", placeholder="e.g., show me the top 10 fds by portfolio value")
|
| 63 |
+
btn = gr.Button("Run")
|
| 64 |
+
sql_out = gr.Textbox(label="Generated SQL", interactive=False)
|
| 65 |
+
why_out = gr.Textbox(label="Reasoning", interactive=False)
|
| 66 |
+
df_out = gr.Dataframe(label="Query Result", wrap=True)
|
| 67 |
+
cf_out = gr.Dataframe(label="Projected Cash-Flows (if applicable)", wrap=True, height=250)
|
| 68 |
+
gap_out = gr.Dataframe(label="Liquidity Gap (monthly)", wrap=True, height=200)
|
| 69 |
+
|
| 70 |
+
btn.click(fn=run_nl, inputs=[nl], outputs=[df_out, sql_out, why_out, cf_out, gap_out])
|
| 71 |
+
|
| 72 |
+
with gr.Tab("Run Raw SQL"):
|
| 73 |
+
sql_in = gr.Code(label="SQL", language="sql", value=f"SELECT * FROM {DEFAULT_SCHEMA}.{DEFAULT_TABLE} LIMIT 20;")
|
| 74 |
+
btn2 = gr.Button("Execute")
|
| 75 |
+
df2 = gr.Dataframe(label="Result", wrap=True)
|
| 76 |
+
status = gr.Textbox(label="Status", interactive=False)
|
| 77 |
+
cf2 = gr.Dataframe(label="Projected Cash-Flows (if applicable)", wrap=True, height=250)
|
| 78 |
+
gap2 = gr.Dataframe(label="Liquidity Gap (monthly)", wrap=True, height=200)
|
| 79 |
+
|
| 80 |
+
btn2.click(fn=run_sql, inputs=[sql_in], outputs=[df2, status, cf2, gap2])
|
| 81 |
|
| 82 |
if __name__ == "__main__":
|
| 83 |
+
# Spaces set PORT automatically; otherwise, Gradio defaults are fine.
|
| 84 |
+
demo.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)))
|
|
|
|
|
|
|
|
|
|
|
|