Update tools/ts_forecast_tool.py
Browse files- tools/ts_forecast_tool.py +105 -20
tools/ts_forecast_tool.py
CHANGED
|
@@ -1,30 +1,115 @@
|
|
| 1 |
# space/tools/ts_forecast_tool.py
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
import pandas as pd
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
class TimeseriesForecastTool:
|
| 7 |
"""
|
| 8 |
-
Lightweight wrapper around ibm-granite/granite-timeseries-ttm-r1
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
"""
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
-
|
| 16 |
-
self.
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
with torch.no_grad():
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
)
|
|
|
|
| 1 |
# space/tools/ts_forecast_tool.py
|
| 2 |
+
import os
|
| 3 |
+
from typing import Optional, Dict
|
| 4 |
+
|
| 5 |
import torch
|
| 6 |
import pandas as pd
|
| 7 |
+
|
| 8 |
+
from utils.tracing import Tracer
|
| 9 |
+
from utils.config import AppConfig
|
| 10 |
+
|
| 11 |
+
# We avoid unavailable task-specific heads.
|
| 12 |
+
# Use a generic AutoModel and attempt capability-based calls.
|
| 13 |
+
from transformers import AutoModel, AutoConfig
|
| 14 |
+
|
| 15 |
|
| 16 |
class TimeseriesForecastTool:
|
| 17 |
"""
|
| 18 |
+
Lightweight wrapper around 'ibm-granite/granite-timeseries-ttm-r1' for zero-shot forecasting.
|
| 19 |
+
|
| 20 |
+
This wrapper:
|
| 21 |
+
- loads the model with `AutoModel.from_pretrained`
|
| 22 |
+
- checks for a `.predict(...)` method first
|
| 23 |
+
- else tries calling the model with `prediction_length=horizon`
|
| 24 |
+
- returns a Pandas DataFrame with a single 'forecast' column
|
| 25 |
+
|
| 26 |
+
Expected input:
|
| 27 |
+
- series: pd.Series with a DatetimeIndex (regular frequency recommended)
|
| 28 |
+
- horizon: int, number of future steps
|
| 29 |
+
|
| 30 |
+
NOTE:
|
| 31 |
+
Different library versions expose different APIs. If your environment/model
|
| 32 |
+
lacks a compatible inference method, we raise a clear RuntimeError with
|
| 33 |
+
guidance rather than failing at import time.
|
| 34 |
"""
|
| 35 |
+
|
| 36 |
+
def __init__(
|
| 37 |
+
self,
|
| 38 |
+
cfg: Optional[AppConfig],
|
| 39 |
+
tracer: Optional[Tracer],
|
| 40 |
+
model_id: str = "ibm-granite/granite-timeseries-ttm-r1",
|
| 41 |
+
device: Optional[str] = None,
|
| 42 |
+
):
|
| 43 |
+
self.cfg = cfg
|
| 44 |
+
self.tracer = tracer
|
| 45 |
+
self.model_id = model_id
|
| 46 |
+
|
| 47 |
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
| 48 |
+
# Load config + model generically
|
| 49 |
+
self.config = AutoConfig.from_pretrained(self.model_id)
|
| 50 |
+
self.model = AutoModel.from_pretrained(self.model_id)
|
| 51 |
+
self.model.to(self.device)
|
| 52 |
+
self.model.eval()
|
| 53 |
+
|
| 54 |
+
def zeroshot_forecast(self, series: pd.Series, horizon: int = 96) -> pd.DataFrame:
|
| 55 |
+
if not isinstance(series, pd.Series):
|
| 56 |
+
raise ValueError("series must be a pandas Series")
|
| 57 |
+
if series.empty:
|
| 58 |
+
return pd.DataFrame(columns=["forecast"])
|
| 59 |
+
|
| 60 |
+
# Ensure numeric tensor
|
| 61 |
+
values = series.astype("float32").to_numpy()
|
| 62 |
+
x = torch.tensor(values, dtype=torch.float32, device=self.device).unsqueeze(0)
|
| 63 |
+
|
| 64 |
with torch.no_grad():
|
| 65 |
+
# 1) Preferred: explicit .predict API
|
| 66 |
+
if hasattr(self.model, "predict"):
|
| 67 |
+
try:
|
| 68 |
+
preds = self.model.predict(x, prediction_length=horizon)
|
| 69 |
+
yhat = preds if isinstance(preds, torch.Tensor) else torch.tensor(preds)
|
| 70 |
+
out = yhat.squeeze().detach().cpu().numpy()
|
| 71 |
+
return pd.DataFrame({"forecast": out})
|
| 72 |
+
except Exception as e:
|
| 73 |
+
raise RuntimeError(
|
| 74 |
+
f"Granite model has a 'predict' method but it failed at runtime: {e}"
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
# 2) Fallback: call forward with a 'prediction_length' kwarg if supported
|
| 78 |
+
try:
|
| 79 |
+
outputs = self.model(x, prediction_length=horizon)
|
| 80 |
+
# Try common attribute names
|
| 81 |
+
for k in ("predictions", "prediction", "logits", "output"):
|
| 82 |
+
if hasattr(outputs, k):
|
| 83 |
+
tensor = getattr(outputs, k)
|
| 84 |
+
if isinstance(tensor, (tuple, list)):
|
| 85 |
+
tensor = tensor[0]
|
| 86 |
+
if not isinstance(tensor, torch.Tensor):
|
| 87 |
+
tensor = torch.tensor(tensor)
|
| 88 |
+
out = tensor.squeeze().detach().cpu().numpy()
|
| 89 |
+
# If multi-dim, take last dimension as forecast
|
| 90 |
+
if out.ndim > 1:
|
| 91 |
+
out = out[-1] if out.shape[0] == horizon else out.reshape(-1)
|
| 92 |
+
return pd.DataFrame({"forecast": out})
|
| 93 |
+
# If outputs is a raw tensor
|
| 94 |
+
if isinstance(outputs, torch.Tensor):
|
| 95 |
+
out = outputs.squeeze().detach().cpu().numpy()
|
| 96 |
+
if out.ndim > 1:
|
| 97 |
+
out = out[-1] if out.shape[0] == horizon else out.reshape(-1)
|
| 98 |
+
return pd.DataFrame({"forecast": out})
|
| 99 |
+
except TypeError:
|
| 100 |
+
# Some builds may not accept prediction_length at all
|
| 101 |
+
pass
|
| 102 |
+
except Exception as e:
|
| 103 |
+
raise RuntimeError(
|
| 104 |
+
f"Calling the model forward for forecasting failed: {e}"
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
# If we get here, the installed combo doesn't expose an inference entrypoint we can use.
|
| 108 |
+
raise RuntimeError(
|
| 109 |
+
"The installed transformers/model combo does not expose a usable zero-shot "
|
| 110 |
+
"forecasting interface (no `.predict` and forward(...) didn't accept "
|
| 111 |
+
"`prediction_length`). Consider:\n"
|
| 112 |
+
" • Upgrading transformers/torch versions\n"
|
| 113 |
+
" • Using the 'granite-tsfm-public' PyPI if available in your region\n"
|
| 114 |
+
" • Switching to a classic forecaster for now (e.g., ARIMA/XGBoost)\n"
|
| 115 |
)
|