Update tools/predict_tool.py
Browse files- tools/predict_tool.py +31 -31
tools/predict_tool.py
CHANGED
|
@@ -1,32 +1,32 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import pandas as pd
|
| 3 |
-
import joblib
|
| 4 |
-
from huggingface_hub import hf_hub_download
|
| 5 |
-
from
|
| 6 |
-
from
|
| 7 |
-
|
| 8 |
-
class PredictTool:
|
| 9 |
-
def __init__(self, cfg: AppConfig, tracer: Tracer):
|
| 10 |
-
self.cfg = cfg
|
| 11 |
-
self.tracer = tracer
|
| 12 |
-
self._model = None
|
| 13 |
-
self._feature_meta = None
|
| 14 |
-
|
| 15 |
-
def _ensure_loaded(self):
|
| 16 |
-
if self._model is None:
|
| 17 |
-
path = hf_hub_download(repo_id=self.cfg.hf_model_repo, filename="model.pkl", token=os.getenv("HF_TOKEN"))
|
| 18 |
-
self._model = joblib.load(path)
|
| 19 |
-
meta = hf_hub_download(repo_id=self.cfg.hf_model_repo, filename="feature_metadata.json", token=os.getenv("HF_TOKEN"))
|
| 20 |
-
import json
|
| 21 |
-
with open(meta, "r") as f:
|
| 22 |
-
self._feature_meta = json.load(f)
|
| 23 |
-
|
| 24 |
-
def run(self, df: pd.DataFrame) -> pd.DataFrame:
|
| 25 |
-
self._ensure_loaded()
|
| 26 |
-
use_cols = self._feature_meta.get("feature_order", list(df.columns))
|
| 27 |
-
X = df[use_cols].copy()
|
| 28 |
-
preds = self._model.predict_proba(X)[:, 1] if hasattr(self._model, "predict_proba") else self._model.predict(X)
|
| 29 |
-
out = df.copy()
|
| 30 |
-
out[self._feature_meta.get("prediction_column", "prediction")] = preds
|
| 31 |
-
self.tracer.trace_event("predict", {"rows": len(out)})
|
| 32 |
return out
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import joblib
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
+
from utils.config import AppConfig
|
| 6 |
+
from utils.tracing import Tracer
|
| 7 |
+
|
| 8 |
+
class PredictTool:
|
| 9 |
+
def __init__(self, cfg: AppConfig, tracer: Tracer):
|
| 10 |
+
self.cfg = cfg
|
| 11 |
+
self.tracer = tracer
|
| 12 |
+
self._model = None
|
| 13 |
+
self._feature_meta = None
|
| 14 |
+
|
| 15 |
+
def _ensure_loaded(self):
|
| 16 |
+
if self._model is None:
|
| 17 |
+
path = hf_hub_download(repo_id=self.cfg.hf_model_repo, filename="model.pkl", token=os.getenv("HF_TOKEN"))
|
| 18 |
+
self._model = joblib.load(path)
|
| 19 |
+
meta = hf_hub_download(repo_id=self.cfg.hf_model_repo, filename="feature_metadata.json", token=os.getenv("HF_TOKEN"))
|
| 20 |
+
import json
|
| 21 |
+
with open(meta, "r") as f:
|
| 22 |
+
self._feature_meta = json.load(f)
|
| 23 |
+
|
| 24 |
+
def run(self, df: pd.DataFrame) -> pd.DataFrame:
|
| 25 |
+
self._ensure_loaded()
|
| 26 |
+
use_cols = self._feature_meta.get("feature_order", list(df.columns))
|
| 27 |
+
X = df[use_cols].copy()
|
| 28 |
+
preds = self._model.predict_proba(X)[:, 1] if hasattr(self._model, "predict_proba") else self._model.predict(X)
|
| 29 |
+
out = df.copy()
|
| 30 |
+
out[self._feature_meta.get("prediction_column", "prediction")] = preds
|
| 31 |
+
self.tracer.trace_event("predict", {"rows": len(out)})
|
| 32 |
return out
|