AshenH commited on
Commit
852fd6f
·
verified ·
1 Parent(s): 7e07719

Create ts_forecast_tool.py

Browse files
Files changed (1) hide show
  1. tools/ts_forecast_tool.py +90 -0
tools/ts_forecast_tool.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # space/tools/ts_forecast_tool.py
2
+ import numpy as np
3
+ import pandas as pd
4
+ from typing import Dict, Optional
5
+
6
+ from utils.tracing import Tracer
7
+ from utils.config import AppConfig
8
+
9
+ # Granite TTM imports (from tsfm_public)
10
+ from tsfm_public.models.tinytimemixer.modeling_tinytimemixer import TinyTimeMixerForPrediction
11
+ from tsfm_public.toolkit.config import TSPPConfig
12
+ from tsfm_public.toolkit.dataset import TimeSeriesDataset
13
+ from tsfm_public.toolkit.trainer import Trainer
14
+
15
+
16
+ class TimeseriesForecastTool:
17
+ """
18
+ Wraps IBM Granite TinyTimeMixer (TTM) for multivariate forecasting.
19
+ Expects a wide dataframe with:
20
+ - 'timestamp' (datetime64[ns])
21
+ - one or more numeric series columns to forecast (targets)
22
+ - optional control/exogenous columns (known-in-future features)
23
+ You must provide context_length and forecast_length to match a TTM variant.
24
+ """
25
+ def __init__(self, cfg: AppConfig, tracer: Tracer,
26
+ hf_model_id: str = "ibm-granite/granite-timeseries-ttm-r1",
27
+ revision: str = "main",
28
+ context_length: int = 512,
29
+ forecast_length: int = 96,
30
+ target_cols: Optional[list] = None,
31
+ control_cols: Optional[list] = None):
32
+ self.cfg = cfg
33
+ self.tracer = tracer
34
+
35
+ self.context_length = context_length
36
+ self.forecast_length = forecast_length
37
+ self.target_cols = target_cols or []
38
+ self.control_cols = control_cols or []
39
+
40
+ # Build TSPP config
41
+ self.tspp_config = TSPPConfig(
42
+ context_length=context_length,
43
+ prediction_length=forecast_length,
44
+ target_cols=self.target_cols,
45
+ known_cov_cols=self.control_cols, # known-in-future exogenous
46
+ time_col="timestamp",
47
+ freq=None # inferred; you can set "H" or "T" if you know it
48
+ )
49
+
50
+ # Load model from HF (r1; try r2 for newer variants if needed)
51
+ self.model = TinyTimeMixerForPrediction.from_pretrained(
52
+ hf_model_id, revision=revision
53
+ )
54
+
55
+ def _build_dataset(self, df: pd.DataFrame) -> TimeSeriesDataset:
56
+ # Minimal build: single item dataset from dataframe (you can batch multiple series)
57
+ item = df.sort_values("timestamp").reset_index(drop=True)
58
+ return TimeSeriesDataset.from_pandas(
59
+ item,
60
+ tspp_config=self.tspp_config
61
+ )
62
+
63
+ def zeroshot_forecast(self, df: pd.DataFrame) -> Dict[str, pd.DataFrame]:
64
+ """
65
+ Zero-shot forecast: no fine-tuning, just apply pre-trained model.
66
+ Returns dict with "forecast" (future horizon) and "context" (last context window).
67
+ """
68
+ dset = self._build_dataset(df)
69
+ trainer = Trainer(model=self.model)
70
+ out = trainer.evaluate(dset) # Granite API uses 'evaluate' for zeroshot
71
+
72
+ # Convert to a user-friendly dataframe
73
+ # out contains predictions for target_cols for next forecast_length steps
74
+ preds = out["predictions"] # dict: {col: np.ndarray [forecast_length]}
75
+ horizon_idx = pd.RangeIndex(self.forecast_length, name="step")
76
+ forecast_df = pd.DataFrame(preds, index=horizon_idx).reset_index(drop=True)
77
+
78
+ try:
79
+ self.tracer.trace_event("ts_forecast", {
80
+ "targets": self.target_cols,
81
+ "ctx": self.context_length,
82
+ "h": self.forecast_length
83
+ })
84
+ except Exception:
85
+ pass
86
+
87
+ return {
88
+ "forecast": forecast_df,
89
+ "context": df.tail(self.context_length).reset_index(drop=True)
90
+ }