Update tools/sql_tool.py
Browse files- tools/sql_tool.py +132 -429
tools/sql_tool.py
CHANGED
|
@@ -1,440 +1,143 @@
|
|
| 1 |
-
#
|
| 2 |
import os
|
| 3 |
import re
|
| 4 |
-
import
|
| 5 |
-
import
|
| 6 |
-
import pandas as pd
|
| 7 |
-
from typing import Optional
|
| 8 |
-
from utils.config import AppConfig
|
| 9 |
-
from utils.tracing import Tracer
|
| 10 |
|
| 11 |
-
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
class SQLToolError(Exception):
|
| 19 |
-
"""Custom exception for SQL tool errors."""
|
| 20 |
-
pass
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
class SQLTool:
|
| 24 |
"""
|
| 25 |
-
SQL
|
| 26 |
-
Includes input validation, error handling, and secure query execution.
|
| 27 |
"""
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
self.
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
self.
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
self._init_bigquery()
|
| 40 |
-
elif self.backend == "motherduck":
|
| 41 |
-
self._init_motherduck()
|
| 42 |
-
else:
|
| 43 |
-
raise SQLToolError(f"Unknown SQL backend: {self.backend}")
|
| 44 |
-
|
| 45 |
-
logger.info(f"SQLTool initialized successfully with {self.backend}")
|
| 46 |
-
|
| 47 |
-
except Exception as e:
|
| 48 |
-
logger.error(f"Failed to initialize SQLTool: {e}")
|
| 49 |
-
raise SQLToolError(f"SQL backend initialization failed: {e}") from e
|
| 50 |
-
|
| 51 |
-
def _init_bigquery(self):
|
| 52 |
-
"""Initialize BigQuery client with service account credentials."""
|
| 53 |
-
try:
|
| 54 |
-
from google.cloud import bigquery
|
| 55 |
-
from google.oauth2 import service_account
|
| 56 |
-
|
| 57 |
-
key_json = os.getenv("GCP_SERVICE_ACCOUNT_JSON")
|
| 58 |
-
if not key_json:
|
| 59 |
-
raise SQLToolError(
|
| 60 |
-
"Missing GCP_SERVICE_ACCOUNT_JSON environment variable. "
|
| 61 |
-
"Please configure BigQuery credentials."
|
| 62 |
-
)
|
| 63 |
-
|
| 64 |
-
# Parse credentials
|
| 65 |
-
try:
|
| 66 |
-
if key_json.strip().startswith("{"):
|
| 67 |
-
info = json.loads(key_json)
|
| 68 |
-
else:
|
| 69 |
-
# Assume it's a file path
|
| 70 |
-
with open(key_json, 'r') as f:
|
| 71 |
-
info = json.load(f)
|
| 72 |
-
except json.JSONDecodeError as e:
|
| 73 |
-
raise SQLToolError(f"Invalid JSON in GCP_SERVICE_ACCOUNT_JSON: {e}")
|
| 74 |
-
except FileNotFoundError:
|
| 75 |
-
raise SQLToolError(f"GCP service account file not found: {key_json}")
|
| 76 |
-
|
| 77 |
-
# Validate required fields
|
| 78 |
-
required_fields = ["type", "project_id", "private_key", "client_email"]
|
| 79 |
-
missing = [f for f in required_fields if f not in info]
|
| 80 |
-
if missing:
|
| 81 |
-
raise SQLToolError(
|
| 82 |
-
f"GCP service account JSON missing required fields: {missing}"
|
| 83 |
-
)
|
| 84 |
-
|
| 85 |
-
creds = service_account.Credentials.from_service_account_info(info)
|
| 86 |
-
project = self.cfg.gcp_project or info.get("project_id")
|
| 87 |
-
|
| 88 |
-
if not project:
|
| 89 |
-
raise SQLToolError("GCP project ID not specified in config or credentials")
|
| 90 |
-
|
| 91 |
-
self.client = bigquery.Client(credentials=creds, project=project)
|
| 92 |
-
logger.info(f"BigQuery client initialized for project: {project}")
|
| 93 |
-
|
| 94 |
-
except ImportError as e:
|
| 95 |
-
raise SQLToolError(
|
| 96 |
-
"BigQuery dependencies not installed. "
|
| 97 |
-
"Install with: pip install google-cloud-bigquery"
|
| 98 |
-
) from e
|
| 99 |
-
|
| 100 |
-
def _init_motherduck(self):
|
| 101 |
-
"""Initialize MotherDuck/DuckDB client with version validation."""
|
| 102 |
-
try:
|
| 103 |
-
import duckdb
|
| 104 |
-
|
| 105 |
-
# Version compatibility check - be more flexible
|
| 106 |
-
version = duckdb.__version__
|
| 107 |
-
logger.info(f"DuckDB version: {version}")
|
| 108 |
-
|
| 109 |
-
# Warn if not on recommended version, but don't fail
|
| 110 |
-
if not version.startswith("1.3"):
|
| 111 |
-
logger.warning(
|
| 112 |
-
f"DuckDB {version} detected. Recommended: 1.3.x for MotherDuck compatibility. "
|
| 113 |
-
"Some features may not work as expected."
|
| 114 |
-
)
|
| 115 |
-
|
| 116 |
-
# Get configuration
|
| 117 |
-
token = (self.cfg.motherduck_token or os.getenv("MOTHERDUCK_TOKEN") or "").strip()
|
| 118 |
-
if not token:
|
| 119 |
-
raise SQLToolError(
|
| 120 |
-
"Missing MOTHERDUCK_TOKEN. "
|
| 121 |
-
"Get your token from: https://motherduck.com/docs/key-tasks/authenticating-to-motherduck"
|
| 122 |
-
)
|
| 123 |
-
|
| 124 |
-
db_name = (self.cfg.motherduck_db or "workspace").strip()
|
| 125 |
-
allow_create = os.getenv("ALLOW_CREATE_DB", "true").lower() == "true"
|
| 126 |
-
|
| 127 |
-
# Connect based on database name
|
| 128 |
-
if db_name in RESERVED_MD_WORKSPACE_NAMES:
|
| 129 |
-
# Workspace mode - no specific database context
|
| 130 |
-
connection_string = f"md:?motherduck_token={token}"
|
| 131 |
-
logger.info("Connecting to MotherDuck workspace")
|
| 132 |
-
self.client = duckdb.connect(connection_string)
|
| 133 |
-
else:
|
| 134 |
-
# Try connecting to specific database
|
| 135 |
-
try:
|
| 136 |
-
connection_string = f"md:{db_name}?motherduck_token={token}"
|
| 137 |
-
logger.info(f"Connecting to MotherDuck database: {db_name}")
|
| 138 |
-
self.client = duckdb.connect(connection_string)
|
| 139 |
-
except Exception as db_err:
|
| 140 |
-
logger.warning(f"Direct connection to '{db_name}' failed: {db_err}")
|
| 141 |
-
|
| 142 |
-
# Fallback: connect to workspace and setup database
|
| 143 |
-
connection_string = f"md:?motherduck_token={token}"
|
| 144 |
-
self.client = duckdb.connect(connection_string)
|
| 145 |
-
self._ensure_db_context(db_name, allow_create)
|
| 146 |
-
|
| 147 |
-
# Test connection
|
| 148 |
-
try:
|
| 149 |
-
self.client.execute("SELECT 1").fetchone()
|
| 150 |
-
logger.info("MotherDuck connection test successful")
|
| 151 |
-
except Exception as e:
|
| 152 |
-
raise SQLToolError(f"MotherDuck connection test failed: {e}")
|
| 153 |
-
|
| 154 |
-
except ImportError as e:
|
| 155 |
-
raise SQLToolError(
|
| 156 |
-
"DuckDB not installed. Install with: pip install duckdb"
|
| 157 |
-
) from e
|
| 158 |
-
|
| 159 |
-
def _ensure_db_context(self, db_name: str, allow_create: bool):
|
| 160 |
-
"""
|
| 161 |
-
Ensure database context is set for MotherDuck.
|
| 162 |
-
Creates database if it doesn't exist and allow_create is True.
|
| 163 |
-
"""
|
| 164 |
-
if db_name in RESERVED_MD_WORKSPACE_NAMES:
|
| 165 |
-
return
|
| 166 |
-
|
| 167 |
-
safe_name = self._quote_ident(db_name)
|
| 168 |
-
|
| 169 |
-
# Try to USE the database first
|
| 170 |
-
try:
|
| 171 |
-
self.client.execute(f"USE {safe_name};")
|
| 172 |
-
logger.info(f"Using existing database: {db_name}")
|
| 173 |
-
return
|
| 174 |
-
except Exception as use_err:
|
| 175 |
-
logger.info(f"Database '{db_name}' not found: {use_err}")
|
| 176 |
-
|
| 177 |
-
if not allow_create:
|
| 178 |
-
raise SQLToolError(
|
| 179 |
-
f"Database '{db_name}' does not exist and ALLOW_CREATE_DB is disabled. "
|
| 180 |
-
f"Either create the database manually or set ALLOW_CREATE_DB=true"
|
| 181 |
-
)
|
| 182 |
-
|
| 183 |
-
# Attempt to create and use the database
|
| 184 |
-
try:
|
| 185 |
-
logger.info(f"Creating database: {db_name}")
|
| 186 |
-
self.client.execute(f"CREATE DATABASE IF NOT EXISTS {safe_name};")
|
| 187 |
-
self.client.execute(f"USE {safe_name};")
|
| 188 |
-
logger.info(f"Database '{db_name}' created and selected")
|
| 189 |
-
except Exception as create_err:
|
| 190 |
-
raise SQLToolError(
|
| 191 |
-
f"Failed to create database '{db_name}': {create_err}"
|
| 192 |
-
) from create_err
|
| 193 |
-
|
| 194 |
-
@staticmethod
|
| 195 |
-
def _quote_ident(name: str) -> str:
|
| 196 |
-
"""
|
| 197 |
-
Safely quote SQL identifiers.
|
| 198 |
-
Replaces non-alphanumeric characters with underscores.
|
| 199 |
-
"""
|
| 200 |
-
if not name:
|
| 201 |
-
return "unnamed"
|
| 202 |
-
|
| 203 |
-
# Remove dangerous characters
|
| 204 |
-
safe = re.sub(r"[^a-zA-Z0-9_]", "_", name)
|
| 205 |
-
|
| 206 |
-
# Ensure it doesn't start with a number
|
| 207 |
-
if safe[0].isdigit():
|
| 208 |
-
safe = "_" + safe
|
| 209 |
-
|
| 210 |
-
return safe
|
| 211 |
-
|
| 212 |
-
def _validate_sql(self, sql: str) -> tuple[bool, str]:
|
| 213 |
-
"""
|
| 214 |
-
Validate SQL query for basic safety.
|
| 215 |
-
Returns (is_valid, error_message).
|
| 216 |
-
"""
|
| 217 |
-
if not sql or not sql.strip():
|
| 218 |
-
return False, "Empty SQL query"
|
| 219 |
-
|
| 220 |
-
if len(sql) > MAX_QUERY_LENGTH:
|
| 221 |
-
return False, f"Query too long (max {MAX_QUERY_LENGTH} characters)"
|
| 222 |
-
|
| 223 |
-
# Dangerous patterns check
|
| 224 |
-
sql_lower = sql.lower()
|
| 225 |
-
|
| 226 |
-
# Block multiple statements (simple check)
|
| 227 |
-
if sql.count(';') > 1:
|
| 228 |
-
return False, "Multiple SQL statements not allowed"
|
| 229 |
-
|
| 230 |
-
# Block dangerous keywords in non-SELECT queries
|
| 231 |
-
dangerous_patterns = [
|
| 232 |
-
(r'\bdrop\s+table\b', "DROP TABLE"),
|
| 233 |
-
(r'\bdrop\s+database\b', "DROP DATABASE"),
|
| 234 |
-
(r'\bdelete\s+from\b', "DELETE FROM"),
|
| 235 |
-
(r'\btruncate\b', "TRUNCATE"),
|
| 236 |
-
(r'\bexec\s*\(', "EXEC"),
|
| 237 |
-
(r'\bexecute\s*\(', "EXECUTE"),
|
| 238 |
-
]
|
| 239 |
-
|
| 240 |
-
for pattern, name in dangerous_patterns:
|
| 241 |
-
if re.search(pattern, sql_lower):
|
| 242 |
-
logger.warning(f"Blocked query with {name} pattern")
|
| 243 |
-
return False, f"Query contains blocked operation: {name}"
|
| 244 |
-
|
| 245 |
-
return True, ""
|
| 246 |
-
|
| 247 |
-
def _nl_to_sql(self, message: str) -> str:
|
| 248 |
-
"""
|
| 249 |
-
Convert natural language to SQL query.
|
| 250 |
-
|
| 251 |
-
IMPORTANT: This is a simple heuristic template system.
|
| 252 |
-
For production, either:
|
| 253 |
-
1. Replace table/column names with your actual schema, OR
|
| 254 |
-
2. Integrate a proper NL2SQL model (e.g., T5, CodeGen, GPT), OR
|
| 255 |
-
3. Have users write SQL directly
|
| 256 |
-
|
| 257 |
-
To customize: Set these environment variables or edit the code:
|
| 258 |
-
- SQL_DEFAULT_SCHEMA (default: "analytics")
|
| 259 |
-
- SQL_DEFAULT_TABLE (default: "fact_table")
|
| 260 |
-
"""
|
| 261 |
-
m = message.lower()
|
| 262 |
-
|
| 263 |
-
# Get configurable defaults
|
| 264 |
-
default_schema = os.getenv("SQL_DEFAULT_SCHEMA", "analytics")
|
| 265 |
-
default_table = os.getenv("SQL_DEFAULT_TABLE", "fact_table")
|
| 266 |
-
full_table = f"{default_schema}.{default_table}"
|
| 267 |
-
|
| 268 |
-
# If it's already SQL, return as-is (after validation)
|
| 269 |
-
if re.match(r'^\s*select\s', m, re.IGNORECASE):
|
| 270 |
-
return message.strip()
|
| 271 |
-
|
| 272 |
-
# Special keyword: show tables/schemas
|
| 273 |
-
if any(keyword in m for keyword in ["show tables", "list tables", "available tables", "what tables"]):
|
| 274 |
-
return """
|
| 275 |
-
SELECT table_schema, table_name, table_type
|
| 276 |
-
FROM information_schema.tables
|
| 277 |
-
WHERE table_schema NOT IN ('information_schema', 'pg_catalog')
|
| 278 |
-
ORDER BY table_schema, table_name
|
| 279 |
-
LIMIT 100;
|
| 280 |
-
"""
|
| 281 |
-
|
| 282 |
-
if any(keyword in m for keyword in ["show schemas", "list schemas", "available schemas"]):
|
| 283 |
-
return """
|
| 284 |
-
SELECT DISTINCT table_schema
|
| 285 |
-
FROM information_schema.tables
|
| 286 |
-
WHERE table_schema NOT IN ('information_schema', 'pg_catalog')
|
| 287 |
-
ORDER BY table_schema;
|
| 288 |
-
"""
|
| 289 |
-
|
| 290 |
-
if "show columns" in m or "describe table" in m or "table structure" in m:
|
| 291 |
-
# Try to extract table name from message
|
| 292 |
-
return f"""
|
| 293 |
-
SELECT column_name, data_type, is_nullable
|
| 294 |
-
FROM information_schema.columns
|
| 295 |
-
WHERE table_schema = '{default_schema}'
|
| 296 |
-
ORDER BY ordinal_position
|
| 297 |
-
LIMIT 100;
|
| 298 |
-
"""
|
| 299 |
-
|
| 300 |
-
# Template-based generation (customize for your schema)
|
| 301 |
-
if "avg" in m or "average" in m:
|
| 302 |
-
if "by month" in m or "monthly" in m:
|
| 303 |
-
return f"""
|
| 304 |
-
SELECT
|
| 305 |
-
DATE_TRUNC('month', date_col) AS month,
|
| 306 |
-
AVG(metric_col) AS avg_metric
|
| 307 |
-
FROM {full_table}
|
| 308 |
-
GROUP BY 1
|
| 309 |
-
ORDER BY 1 DESC
|
| 310 |
-
LIMIT 100;
|
| 311 |
-
"""
|
| 312 |
-
|
| 313 |
-
if "top" in m:
|
| 314 |
-
# Extract number if present
|
| 315 |
-
match = re.search(r'top\s+(\d+)', m)
|
| 316 |
-
limit = match.group(1) if match else "10"
|
| 317 |
-
return f"""
|
| 318 |
-
SELECT *
|
| 319 |
-
FROM {full_table}
|
| 320 |
-
ORDER BY metric_col DESC
|
| 321 |
-
LIMIT {limit};
|
| 322 |
-
"""
|
| 323 |
-
|
| 324 |
-
if "count" in m:
|
| 325 |
-
return f"""
|
| 326 |
-
SELECT
|
| 327 |
-
category_col,
|
| 328 |
-
COUNT(*) AS count
|
| 329 |
-
FROM {full_table}
|
| 330 |
-
GROUP BY 1
|
| 331 |
-
ORDER BY 2 DESC
|
| 332 |
-
LIMIT 100;
|
| 333 |
-
"""
|
| 334 |
-
|
| 335 |
-
# Default fallback - show available tables instead of failing
|
| 336 |
-
logger.warning(
|
| 337 |
-
f"Could not generate specific SQL for query: '{message}'. "
|
| 338 |
-
f"Returning list of available tables. "
|
| 339 |
-
f"Configure SQL_DEFAULT_SCHEMA and SQL_DEFAULT_TABLE or write SQL directly."
|
| 340 |
-
)
|
| 341 |
-
return """
|
| 342 |
-
SELECT
|
| 343 |
-
table_schema,
|
| 344 |
-
table_name,
|
| 345 |
-
table_type,
|
| 346 |
-
'Run: SELECT * FROM ' || table_schema || '.' || table_name || ' LIMIT 5' as example_query
|
| 347 |
-
FROM information_schema.tables
|
| 348 |
-
WHERE table_schema NOT IN ('information_schema', 'pg_catalog')
|
| 349 |
-
ORDER BY table_schema, table_name
|
| 350 |
-
LIMIT 50;
|
| 351 |
-
"""
|
| 352 |
-
|
| 353 |
-
def run(self, message: str) -> pd.DataFrame:
|
| 354 |
"""
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
Args:
|
| 358 |
-
message: Natural language query or SQL statement
|
| 359 |
-
|
| 360 |
-
Returns:
|
| 361 |
-
DataFrame with query results
|
| 362 |
-
|
| 363 |
-
Raises:
|
| 364 |
-
SQLToolError: If query execution fails
|
| 365 |
"""
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
}
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# tools/sql_tool.py
|
| 2 |
import os
|
| 3 |
import re
|
| 4 |
+
import duckdb
|
| 5 |
+
from typing import Optional, Tuple
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
DUCKDB_PATH = os.getenv("DUCKDB_PATH", "alm.duckdb")
|
| 8 |
|
| 9 |
+
# Defaults point to your real table; can be overridden via Space secrets
|
| 10 |
+
DEFAULT_SCHEMA = os.getenv("SQL_DEFAULT_SCHEMA", "main")
|
| 11 |
+
DEFAULT_TABLE = os.getenv("SQL_DEFAULT_TABLE", "masterdataset_v")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
def _full_table(schema: Optional[str] = None, table: Optional[str] = None) -> str:
|
| 14 |
+
schema = schema or DEFAULT_SCHEMA
|
| 15 |
+
table = table or DEFAULT_TABLE
|
| 16 |
+
return f"{schema}.{table}"
|
| 17 |
|
| 18 |
class SQLTool:
|
| 19 |
"""
|
| 20 |
+
Minimal NL→SQL helper wired to main.masterdataset_v with a DuckDB runner.
|
|
|
|
| 21 |
"""
|
| 22 |
+
def __init__(self, db_path: Optional[str] = None):
|
| 23 |
+
self.db_path = db_path or DUCKDB_PATH
|
| 24 |
+
self.con = duckdb.connect(self.db_path)
|
| 25 |
+
|
| 26 |
+
def run_sql(self, sql: str):
|
| 27 |
+
return self.con.execute(sql).df()
|
| 28 |
+
|
| 29 |
+
# -------------------------
|
| 30 |
+
# NL → SQL
|
| 31 |
+
# -------------------------
|
| 32 |
+
def _nl_to_sql(self, message: str, schema: Optional[str] = None, table: Optional[str] = None) -> Tuple[str, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
"""
|
| 34 |
+
Returns (sql, rationale). Very small template library covering your common queries.
|
| 35 |
+
Falls back to SHOW TABLES if no match.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
"""
|
| 37 |
+
full_table = _full_table(schema, table)
|
| 38 |
+
m = message.strip().lower()
|
| 39 |
+
|
| 40 |
+
# Common synonyms
|
| 41 |
+
def has_any(txt, words):
|
| 42 |
+
return any(w in txt for w in words)
|
| 43 |
+
|
| 44 |
+
# Extract a "top N"
|
| 45 |
+
limit = None
|
| 46 |
+
m_top = re.search(r"\btop\s+(\d+)", m)
|
| 47 |
+
if m_top:
|
| 48 |
+
limit = int(m_top.group(1))
|
| 49 |
+
|
| 50 |
+
# 1) Top N FDs by Portfolio_value
|
| 51 |
+
if has_any(m, ["fd", "fixed deposit", "deposits"]) and has_any(m, ["top", "largest", "biggest"]) and has_any(m, ["portfolio value", "portfolio_value"]):
|
| 52 |
+
n = limit or 10
|
| 53 |
+
sql = f"""
|
| 54 |
+
SELECT contract_number, Portfolio_value, Interest_rate, currency, segments
|
| 55 |
+
FROM {full_table}
|
| 56 |
+
WHERE lower(product) = 'fd'
|
| 57 |
+
ORDER BY Portfolio_value DESC
|
| 58 |
+
LIMIT {n};
|
| 59 |
+
"""
|
| 60 |
+
why = f"Top {n} fixed deposits by Portfolio_value from {full_table}"
|
| 61 |
+
return sql, why
|
| 62 |
+
|
| 63 |
+
# 2) Top N Assets by Portfolio_value
|
| 64 |
+
if has_any(m, ["asset", "loan", "advances"]) and has_any(m, ["top", "largest", "biggest"]) and has_any(m, ["portfolio value", "portfolio_value"]):
|
| 65 |
+
n = limit or 10
|
| 66 |
+
sql = f"""
|
| 67 |
+
SELECT contract_number, Portfolio_value, Interest_rate, currency, segments
|
| 68 |
+
FROM {full_table}
|
| 69 |
+
WHERE lower(product) = 'assets'
|
| 70 |
+
ORDER BY Portfolio_value DESC
|
| 71 |
+
LIMIT {n};
|
| 72 |
+
"""
|
| 73 |
+
why = f"Top {n} assets by Portfolio_value from {full_table}"
|
| 74 |
+
return sql, why
|
| 75 |
+
|
| 76 |
+
# 3) Aggregate (SUM/AVG) by segment or currency
|
| 77 |
+
if has_any(m, ["sum", "total", "avg", "average"]) and has_any(m, ["segment", "currency"]):
|
| 78 |
+
agg = "SUM" if has_any(m, ["sum", "total"]) else "AVG"
|
| 79 |
+
dim = "segments" if "segment" in m else "currency"
|
| 80 |
+
sql = f"""
|
| 81 |
+
SELECT {dim}, {agg}(Portfolio_value) AS {agg.lower()}_Portfolio_value
|
| 82 |
+
FROM {full_table}
|
| 83 |
+
GROUP BY 1
|
| 84 |
+
ORDER BY 2 DESC;
|
| 85 |
+
"""
|
| 86 |
+
why = f"{agg} Portfolio_value grouped by {dim} from {full_table}"
|
| 87 |
+
return sql, why
|
| 88 |
+
|
| 89 |
+
# 4) Filter by product, currency, or segment
|
| 90 |
+
product = None
|
| 91 |
+
if "fd" in m or "deposit" in m:
|
| 92 |
+
product = "fd"
|
| 93 |
+
elif "asset" in m or "loan" in m or "advance" in m:
|
| 94 |
+
product = "assets"
|
| 95 |
+
|
| 96 |
+
parts = [f"SELECT * FROM {full_table} WHERE 1=1"]
|
| 97 |
+
why_parts = [f"Filtered rows from {full_table}"]
|
| 98 |
+
|
| 99 |
+
if product:
|
| 100 |
+
parts.append(f"AND lower(product) = '{product}'")
|
| 101 |
+
why_parts.append(f"product = {product}")
|
| 102 |
+
|
| 103 |
+
# currency filter like: "in lkr", "currency usd"
|
| 104 |
+
cur = None
|
| 105 |
+
cur_match = re.search(r"\b(currency|in)\s+([a-z]{3})\b", m)
|
| 106 |
+
if cur_match:
|
| 107 |
+
cur = cur_match.group(2).upper()
|
| 108 |
+
if cur:
|
| 109 |
+
parts.append(f"AND upper(currency) = '{cur}'")
|
| 110 |
+
why_parts.append(f"currency = {cur}")
|
| 111 |
+
|
| 112 |
+
# segment filter like: "segment retail" or "for corporate"
|
| 113 |
+
seg_match = re.search(r"(segment|for)\s+([a-z0-9_\- ]+)", m)
|
| 114 |
+
if seg_match:
|
| 115 |
+
seg = seg_match.group(2).strip()
|
| 116 |
+
if seg:
|
| 117 |
+
parts.append(f"AND lower(segments) LIKE '%{seg.lower()}%'")
|
| 118 |
+
why_parts.append(f"segments like '{seg}'")
|
| 119 |
+
|
| 120 |
+
# maybe a limit
|
| 121 |
+
if limit:
|
| 122 |
+
parts.append(f"LIMIT {limit}")
|
| 123 |
+
|
| 124 |
+
fallback_sql = " ".join(parts) + ";"
|
| 125 |
+
fallback_why = "; ".join(why_parts)
|
| 126 |
+
if fallback_sql:
|
| 127 |
+
return fallback_sql, fallback_why
|
| 128 |
+
|
| 129 |
+
# 5) Super fallback: show sample rows
|
| 130 |
+
return f"SELECT * FROM {full_table} LIMIT 20;", f"Default sample from {full_table}"
|
| 131 |
+
|
| 132 |
+
# Public helpers
|
| 133 |
+
def query_from_nl(self, message: str):
|
| 134 |
+
sql, why = self._nl_to_sql(message)
|
| 135 |
+
df = self.run_sql(sql)
|
| 136 |
+
return df, sql, why
|
| 137 |
+
|
| 138 |
+
def table_exists(self, schema: Optional[str] = None, table: Optional[str] = None) -> bool:
|
| 139 |
+
schema = schema or DEFAULT_SCHEMA
|
| 140 |
+
table = table or DEFAULT_TABLE
|
| 141 |
+
q = f"SELECT COUNT(*) AS n FROM information_schema.tables WHERE table_schema = '{schema}' AND table_name = '{table}';"
|
| 142 |
+
n = self.con.execute(q).fetchone()[0]
|
| 143 |
+
return n > 0
|