Update tools/predict_tool.py
Browse files- tools/predict_tool.py +86 -16
tools/predict_tool.py
CHANGED
|
@@ -1,32 +1,102 @@
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import joblib
|
|
|
|
|
|
|
| 4 |
from huggingface_hub import hf_hub_download
|
| 5 |
from utils.config import AppConfig
|
| 6 |
from utils.tracing import Tracer
|
| 7 |
|
|
|
|
| 8 |
class PredictTool:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
def __init__(self, cfg: AppConfig, tracer: Tracer):
|
| 10 |
self.cfg = cfg
|
| 11 |
self.tracer = tracer
|
| 12 |
self._model = None
|
| 13 |
-
self._feature_meta =
|
|
|
|
|
|
|
| 14 |
|
| 15 |
def _ensure_loaded(self):
|
| 16 |
-
if self._model is None:
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
self._ensure_loaded()
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
out = df.copy()
|
| 30 |
-
out[self.
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# space/tools/predict_tool.py
|
| 2 |
import os
|
| 3 |
+
import json
|
| 4 |
import pandas as pd
|
| 5 |
import joblib
|
| 6 |
+
from typing import Optional, List
|
| 7 |
+
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
from utils.config import AppConfig
|
| 10 |
from utils.tracing import Tracer
|
| 11 |
|
| 12 |
+
|
| 13 |
class PredictTool:
|
| 14 |
+
"""
|
| 15 |
+
Loads a sklearn-compatible tabular model artifact from a private/public
|
| 16 |
+
Hugging Face repo and runs batch predictions on a DataFrame.
|
| 17 |
+
Expects:
|
| 18 |
+
- model.pkl
|
| 19 |
+
- feature_metadata.json (optional but recommended)
|
| 20 |
+
{
|
| 21 |
+
"feature_order": ["col1","col2",...],
|
| 22 |
+
"prediction_column": "prediction",
|
| 23 |
+
"task": "classification" | "regression"
|
| 24 |
+
}
|
| 25 |
+
"""
|
| 26 |
def __init__(self, cfg: AppConfig, tracer: Tracer):
|
| 27 |
self.cfg = cfg
|
| 28 |
self.tracer = tracer
|
| 29 |
self._model = None
|
| 30 |
+
self._feature_meta = {}
|
| 31 |
+
self._pred_col = "prediction"
|
| 32 |
+
self._feature_order: Optional[List[str]] = None
|
| 33 |
|
| 34 |
def _ensure_loaded(self):
|
| 35 |
+
if self._model is not None:
|
| 36 |
+
return
|
| 37 |
+
|
| 38 |
+
token = os.getenv("HF_TOKEN") # OK if None for public repos
|
| 39 |
+
repo = self.cfg.hf_model_repo
|
| 40 |
+
|
| 41 |
+
model_path = hf_hub_download(
|
| 42 |
+
repo_id=repo,
|
| 43 |
+
filename="model.pkl",
|
| 44 |
+
token=token
|
| 45 |
+
)
|
| 46 |
+
self._model = joblib.load(model_path)
|
| 47 |
+
|
| 48 |
+
# feature metadata is optional; handle gracefully
|
| 49 |
+
try:
|
| 50 |
+
meta_path = hf_hub_download(
|
| 51 |
+
repo_id=repo,
|
| 52 |
+
filename="feature_metadata.json",
|
| 53 |
+
token=token
|
| 54 |
+
)
|
| 55 |
+
with open(meta_path, "r", encoding="utf-8") as f:
|
| 56 |
+
self._feature_meta = json.load(f) or {}
|
| 57 |
+
except Exception:
|
| 58 |
+
self._feature_meta = {}
|
| 59 |
+
|
| 60 |
+
self._pred_col = self._feature_meta.get("prediction_column", "prediction")
|
| 61 |
+
self._feature_order = self._feature_meta.get("feature_order")
|
| 62 |
+
|
| 63 |
+
def _select_features(self, df: pd.DataFrame) -> pd.DataFrame:
|
| 64 |
+
if self._feature_order:
|
| 65 |
+
# keep only features in the trained order, ignore extras
|
| 66 |
+
missing = [c for c in self._feature_order if c not in df.columns]
|
| 67 |
+
if missing:
|
| 68 |
+
raise ValueError(f"Missing required features for model: {missing}")
|
| 69 |
+
return df[self._feature_order].copy()
|
| 70 |
+
# default: use everything present
|
| 71 |
+
return df.copy()
|
| 72 |
+
|
| 73 |
+
def run(self, df: Optional[pd.DataFrame]) -> pd.DataFrame:
|
| 74 |
+
"""
|
| 75 |
+
If df is None, returns an empty DataFrame.
|
| 76 |
+
"""
|
| 77 |
self._ensure_loaded()
|
| 78 |
+
if df is None or len(df) == 0:
|
| 79 |
+
return pd.DataFrame()
|
| 80 |
+
|
| 81 |
+
X = self._select_features(df)
|
| 82 |
+
model = self._model
|
| 83 |
+
|
| 84 |
+
# classification with probabilities preferred
|
| 85 |
+
if hasattr(model, "predict_proba"):
|
| 86 |
+
preds = model.predict_proba(X)[:, -1]
|
| 87 |
+
elif hasattr(model, "decision_function"):
|
| 88 |
+
# fallback: map decision function to a score
|
| 89 |
+
import numpy as np
|
| 90 |
+
raw = model.decision_function(X)
|
| 91 |
+
# simple sigmoid to scale-ish if binary
|
| 92 |
+
preds = 1 / (1 + np.exp(-raw))
|
| 93 |
+
else:
|
| 94 |
+
preds = model.predict(X)
|
| 95 |
+
|
| 96 |
out = df.copy()
|
| 97 |
+
out[self._pred_col] = preds
|
| 98 |
+
try:
|
| 99 |
+
self.tracer.trace_event("predict", {"rows": len(out)})
|
| 100 |
+
except Exception:
|
| 101 |
+
pass
|
| 102 |
+
return out
|