Update tools/explain_tool.py
Browse files- tools/explain_tool.py +5 -27
tools/explain_tool.py
CHANGED
|
@@ -17,8 +17,7 @@ from utils.tracing import Tracer
|
|
| 17 |
|
| 18 |
class ExplainTool:
|
| 19 |
"""
|
| 20 |
-
Generates
|
| 21 |
-
of the current DataFrame. Designed to run on CPU in HF Spaces.
|
| 22 |
"""
|
| 23 |
def __init__(self, cfg: AppConfig, tracer: Tracer):
|
| 24 |
self.cfg = cfg
|
|
@@ -32,20 +31,11 @@ class ExplainTool:
|
|
| 32 |
token = os.getenv("HF_TOKEN")
|
| 33 |
repo = self.cfg.hf_model_repo
|
| 34 |
|
| 35 |
-
model_path = hf_hub_download(
|
| 36 |
-
repo_id=repo,
|
| 37 |
-
filename="model.pkl",
|
| 38 |
-
token=token
|
| 39 |
-
)
|
| 40 |
self._model = joblib.load(model_path)
|
| 41 |
|
| 42 |
-
# read optional feature metadata to keep column order consistent
|
| 43 |
try:
|
| 44 |
-
meta_path = hf_hub_download(
|
| 45 |
-
repo_id=repo,
|
| 46 |
-
filename="feature_metadata.json",
|
| 47 |
-
token=token
|
| 48 |
-
)
|
| 49 |
with open(meta_path, "r", encoding="utf-8") as f:
|
| 50 |
meta = json.load(f) or {}
|
| 51 |
self._feature_order = meta.get("feature_order")
|
|
@@ -61,38 +51,26 @@ class ExplainTool:
|
|
| 61 |
return "data:image/png;base64," + base64.b64encode(buf.read()).decode()
|
| 62 |
|
| 63 |
def run(self, df: Optional[pd.DataFrame]) -> Dict[str, str]:
|
| 64 |
-
"""
|
| 65 |
-
Returns dict of {plot_name: data_uri_png}. If df is None/empty, returns {}.
|
| 66 |
-
"""
|
| 67 |
self._ensure_model()
|
| 68 |
if df is None or len(df) == 0:
|
| 69 |
return {}
|
| 70 |
|
| 71 |
-
# Select & sample features
|
| 72 |
if self._feature_order:
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
# best effort: intersect
|
| 76 |
-
X = df[[c for c in self._feature_order if c in df.columns]].copy()
|
| 77 |
-
else:
|
| 78 |
-
X = df[self._feature_order].copy()
|
| 79 |
else:
|
| 80 |
X = df.copy()
|
| 81 |
|
| 82 |
-
# Small sample for speed
|
| 83 |
n = min(len(X), 500)
|
| 84 |
sample = X.sample(n, random_state=42) if len(X) > n else X
|
| 85 |
|
| 86 |
-
# Build explainer and compute SHAP values
|
| 87 |
explainer = shap.Explainer(self._model, sample)
|
| 88 |
sv = explainer(sample)
|
| 89 |
|
| 90 |
-
# --- Global bar plot ---
|
| 91 |
fig_bar = plt.figure()
|
| 92 |
shap.plots.bar(sv, show=False)
|
| 93 |
bar_uri = self._to_data_uri(fig_bar)
|
| 94 |
|
| 95 |
-
# --- Beeswarm plot ---
|
| 96 |
fig_bee = plt.figure()
|
| 97 |
shap.plots.beeswarm(sv, show=False)
|
| 98 |
bee_uri = self._to_data_uri(fig_bee)
|
|
|
|
| 17 |
|
| 18 |
class ExplainTool:
|
| 19 |
"""
|
| 20 |
+
Generates global SHAP visualizations for a sample of rows (CPU-friendly).
|
|
|
|
| 21 |
"""
|
| 22 |
def __init__(self, cfg: AppConfig, tracer: Tracer):
|
| 23 |
self.cfg = cfg
|
|
|
|
| 31 |
token = os.getenv("HF_TOKEN")
|
| 32 |
repo = self.cfg.hf_model_repo
|
| 33 |
|
| 34 |
+
model_path = hf_hub_download(repo_id=repo, filename="model.pkl", token=token)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
self._model = joblib.load(model_path)
|
| 36 |
|
|
|
|
| 37 |
try:
|
| 38 |
+
meta_path = hf_hub_download(repo_id=repo, filename="feature_metadata.json", token=token)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
with open(meta_path, "r", encoding="utf-8") as f:
|
| 40 |
meta = json.load(f) or {}
|
| 41 |
self._feature_order = meta.get("feature_order")
|
|
|
|
| 51 |
return "data:image/png;base64," + base64.b64encode(buf.read()).decode()
|
| 52 |
|
| 53 |
def run(self, df: Optional[pd.DataFrame]) -> Dict[str, str]:
|
|
|
|
|
|
|
|
|
|
| 54 |
self._ensure_model()
|
| 55 |
if df is None or len(df) == 0:
|
| 56 |
return {}
|
| 57 |
|
|
|
|
| 58 |
if self._feature_order:
|
| 59 |
+
cols = [c for c in self._feature_order if c in df.columns]
|
| 60 |
+
X = df[cols].copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
else:
|
| 62 |
X = df.copy()
|
| 63 |
|
|
|
|
| 64 |
n = min(len(X), 500)
|
| 65 |
sample = X.sample(n, random_state=42) if len(X) > n else X
|
| 66 |
|
|
|
|
| 67 |
explainer = shap.Explainer(self._model, sample)
|
| 68 |
sv = explainer(sample)
|
| 69 |
|
|
|
|
| 70 |
fig_bar = plt.figure()
|
| 71 |
shap.plots.bar(sv, show=False)
|
| 72 |
bar_uri = self._to_data_uri(fig_bar)
|
| 73 |
|
|
|
|
| 74 |
fig_bee = plt.figure()
|
| 75 |
shap.plots.beeswarm(sv, show=False)
|
| 76 |
bee_uri = self._to_data_uri(fig_bee)
|