AravindKumarRajendran commited on
Commit
f617ed0
·
1 Parent(s): 4ddc3dc

model path

Browse files
Files changed (2) hide show
  1. app.py +45 -61
  2. requirements.txt +3 -1
app.py CHANGED
@@ -1,64 +1,48 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from huggingface_hub import hf_hub_download
3
+ from llama_cpp import Llama
4
+
5
+ # Replace with your actual HF model repo and filename
6
+ model_repo = "AravindKumarRajendran/WhiZ-gemma-3n-4b"
7
+ model_filename = "gemma-3n-4b-it-finetune.Q8_0.gguf" # Exact GGUF file name in repo
8
+
9
+ # Download GGUF model from HF Hub (caches locally)
10
+ model_path = hf_hub_download(repo_id=model_repo, filename=model_filename)
11
+
12
+ # Load model with llama-cpp
13
+ llm = Llama(
14
+ model_path=model_path,
15
+ n_ctx=2048,
16
+ n_threads=4,
17
+ n_batch=64,
18
+ verbose=False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  )
20
 
21
+ # Chat handler
22
+ def chat_with_model(history, user_input):
23
+ history.append(("🧑‍💻: " + user_input, ""))
24
+ prompt = f"{user_input} தமிழில் பதிலளி:"
25
+
26
+ output = llm(
27
+ prompt,
28
+ max_tokens=128,
29
+ temperature=0.7,
30
+ stop=["</s>"],
31
+ )
32
+
33
+ reply = output["choices"][0]["text"].strip()
34
+ history[-1] = (history[-1][0], "🤖: " + reply)
35
+ return history, ""
36
+
37
+ # Gradio UI
38
+ with gr.Blocks() as demo:
39
+ gr.Markdown("## 🗣️ தமிழில் உரையாடல் (Tamil Chatbot - GGUF on CPU)")
40
+ chatbot = gr.Chatbot()
41
+ msg = gr.Textbox(label="உங்கள் செய்தி", placeholder="Type your message...")
42
+ clear = gr.Button("🧹 Clear Chat")
43
+ state = gr.State([])
44
+
45
+ msg.submit(chat_with_model, [state, msg], [chatbot, msg])
46
+ clear.click(lambda: ([], ""), None, [chatbot, msg, state])
47
+
48
+ demo.launch()
requirements.txt CHANGED
@@ -1 +1,3 @@
1
- huggingface_hub==0.25.2
 
 
 
1
+ huggingface_hub==0.25.2
2
+ llama-cpp-python==0.2.58
3
+ gradio