Update app.py
Browse files
app.py
CHANGED
|
@@ -27,18 +27,24 @@ logger = logging.getLogger(__name__)
|
|
| 27 |
# Install required packages at runtime for Hugging Face Spaces
|
| 28 |
def install_dependencies():
|
| 29 |
logger.info("Checking and installing dependencies...")
|
| 30 |
-
|
| 31 |
packages_to_install = [
|
| 32 |
"opencv-python",
|
| 33 |
"opencv-contrib-python", # For dnn_superres module
|
| 34 |
"numpy",
|
| 35 |
"pillow",
|
| 36 |
-
"torch torchvision torchaudio
|
| 37 |
-
"facexlib",
|
| 38 |
-
"basicsr",
|
| 39 |
"gfpgan",
|
| 40 |
-
"realesrgan"
|
|
|
|
| 41 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
for package in packages_to_install:
|
| 44 |
try:
|
|
@@ -46,17 +52,34 @@ def install_dependencies():
|
|
| 46 |
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
| 47 |
except Exception as e:
|
| 48 |
logger.warning(f"Error installing {package}: {str(e)}")
|
| 49 |
-
|
| 50 |
logger.info("Dependencies installation complete")
|
| 51 |
|
| 52 |
# Try to install dependencies on startup
|
| 53 |
try:
|
| 54 |
install_dependencies()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
time.sleep(2) # Give some time for packages to settle
|
| 56 |
except Exception as e:
|
| 57 |
-
logger.error(f"Failed to install dependencies: {str(e)}")
|
| 58 |
|
| 59 |
-
# Check for GPU or CPU
|
| 60 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 61 |
logger.info(f"Using device: {device}")
|
| 62 |
|
|
@@ -79,7 +102,7 @@ MODEL_OPTIONS = {
|
|
| 79 |
"filename": "GFPGANv1.4.pth",
|
| 80 |
"type": "face",
|
| 81 |
"method": "gfpgan",
|
| 82 |
-
"scale": 1
|
| 83 |
},
|
| 84 |
"HDR Enhancement": {
|
| 85 |
"type": "hdr",
|
|
@@ -94,134 +117,156 @@ model_cache = {}
|
|
| 94 |
# Function to load the selected model with robust fallbacks
|
| 95 |
def load_model(model_name):
|
| 96 |
global model_cache
|
| 97 |
-
|
| 98 |
# Return cached model if available
|
| 99 |
if model_name in model_cache:
|
| 100 |
logger.info(f"Using cached model: {model_name}")
|
| 101 |
return model_cache[model_name]
|
| 102 |
-
|
| 103 |
logger.info(f"Loading model: {model_name}")
|
| 104 |
config = MODEL_OPTIONS.get(model_name)
|
| 105 |
if not config:
|
| 106 |
return None, f"Model {model_name} not found in configuration"
|
| 107 |
-
|
| 108 |
model_type = config["type"]
|
| 109 |
-
|
| 110 |
try:
|
| 111 |
-
# OpenCV based models (always available as fallback)
|
| 112 |
if config["method"] == "opencv":
|
| 113 |
logger.info("Loading OpenCV Super Resolution model")
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
# Real-ESRGAN models
|
| 135 |
elif config["method"] == "realesrgan":
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
try:
|
| 137 |
-
from realesrgan import RealESRGAN
|
| 138 |
logger.info("Loading Real-ESRGAN model")
|
| 139 |
-
|
| 140 |
model_path = hf_hub_download(
|
| 141 |
repo_id=config["repo_id"],
|
| 142 |
filename=config["filename"],
|
| 143 |
cache_dir=CACHE_DIR
|
| 144 |
)
|
| 145 |
-
|
|
|
|
| 146 |
model = RealESRGAN(device, scale=config["scale"])
|
| 147 |
model.load_weights(model_path)
|
| 148 |
-
|
| 149 |
model_cache[model_name] = (model, model_type)
|
| 150 |
return model, model_type
|
| 151 |
-
except
|
| 152 |
-
logger.
|
| 153 |
-
|
| 154 |
-
|
|
|
|
| 155 |
# GFPGAN for face enhancement
|
| 156 |
elif config["method"] == "gfpgan":
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
try:
|
| 158 |
-
from gfpgan import GFPGANer
|
| 159 |
logger.info("Loading GFPGAN model")
|
| 160 |
-
|
| 161 |
model_path = hf_hub_download(
|
| 162 |
repo_id=config["repo_id"],
|
| 163 |
filename=config["filename"],
|
| 164 |
cache_dir=CACHE_DIR
|
| 165 |
)
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
face_enhancer = GFPGANer(
|
| 168 |
model_path=model_path,
|
| 169 |
-
upscale=config["scale"],
|
| 170 |
-
arch='clean',
|
| 171 |
channel_multiplier=2,
|
| 172 |
-
bg_upsampler=None
|
| 173 |
)
|
| 174 |
-
|
| 175 |
model_cache[model_name] = (face_enhancer, model_type)
|
| 176 |
return face_enhancer, model_type
|
| 177 |
-
except
|
| 178 |
-
logger.
|
| 179 |
-
|
| 180 |
-
|
|
|
|
| 181 |
# HDR Enhancement (custom implementation)
|
| 182 |
elif config["method"] == "custom":
|
| 183 |
# No model to load for custom HDR
|
| 184 |
model_cache[model_name] = (None, model_type)
|
| 185 |
return None, model_type
|
| 186 |
-
|
| 187 |
else:
|
| 188 |
-
|
| 189 |
-
|
| 190 |
except Exception as e:
|
| 191 |
-
logger.error(f"
|
| 192 |
import traceback
|
| 193 |
traceback.print_exc()
|
| 194 |
-
|
| 195 |
-
# Always provide a fallback method
|
| 196 |
if model_name != "OpenCV Super Resolution":
|
| 197 |
-
logger.info("
|
| 198 |
return load_model("OpenCV Super Resolution")
|
| 199 |
else:
|
| 200 |
-
|
|
|
|
|
|
|
| 201 |
|
| 202 |
# Function to preprocess image for processing
|
| 203 |
def preprocess_image(image):
|
| 204 |
"""Convert PIL image to numpy array for processing"""
|
| 205 |
if image is None:
|
| 206 |
return None
|
| 207 |
-
|
| 208 |
if isinstance(image, Image.Image):
|
| 209 |
# Convert PIL image to numpy array
|
| 210 |
img = np.array(image)
|
| 211 |
else:
|
|
|
|
| 212 |
img = image
|
| 213 |
-
|
| 214 |
# Handle grayscale images by converting to RGB
|
| 215 |
if len(img.shape) == 2:
|
| 216 |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
| 217 |
-
|
| 218 |
# Handle RGBA images by removing alpha channel
|
| 219 |
if img.shape[2] == 4:
|
| 220 |
img = img[:, :, :3]
|
| 221 |
-
|
| 222 |
# Convert RGB to BGR for OpenCV processing
|
| 223 |
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
| 224 |
-
|
| 225 |
return img_bgr
|
| 226 |
|
| 227 |
# Function to postprocess image for display
|
|
@@ -229,14 +274,16 @@ def postprocess_image(img_bgr):
|
|
| 229 |
"""Convert processed BGR image back to RGB PIL image"""
|
| 230 |
if img_bgr is None:
|
| 231 |
return None
|
| 232 |
-
|
| 233 |
# Ensure image is uint8
|
| 234 |
if img_bgr.dtype != np.uint8:
|
| 235 |
-
|
| 236 |
-
|
|
|
|
|
|
|
| 237 |
# Convert BGR to RGB for PIL
|
| 238 |
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
|
| 239 |
-
|
| 240 |
return Image.fromarray(img_rgb)
|
| 241 |
|
| 242 |
# HDR enhancement function
|
|
@@ -244,152 +291,199 @@ def enhance_hdr(img_bgr, strength=1.0):
|
|
| 244 |
"""Custom HDR enhancement using OpenCV"""
|
| 245 |
# Convert BGR to RGB
|
| 246 |
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
|
| 247 |
-
|
| 248 |
-
# Convert to float32 for processing
|
| 249 |
img_float = img_rgb.astype(np.float32) / 255.0
|
| 250 |
-
|
| 251 |
-
#
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
|
| 293 |
# Main image enhancement function
|
| 294 |
def enhance_image(image, model_name, strength=1.0, denoise=0.0, sharpen=0.0):
|
| 295 |
"""Enhance image using selected model with additional processing options"""
|
| 296 |
if image is None:
|
| 297 |
return "Please upload an image.", None
|
| 298 |
-
|
| 299 |
try:
|
| 300 |
# Load model
|
| 301 |
-
model,
|
| 302 |
-
if isinstance(
|
| 303 |
-
|
| 304 |
-
|
|
|
|
|
|
|
|
|
|
| 305 |
# Preprocess image
|
| 306 |
img_bgr = preprocess_image(image)
|
| 307 |
if img_bgr is None:
|
| 308 |
return "Failed to process image", None
|
| 309 |
-
|
| 310 |
# Apply denoising if requested
|
| 311 |
if denoise > 0:
|
| 312 |
-
|
|
|
|
|
|
|
|
|
|
| 313 |
img_bgr = cv2.fastNlMeansDenoisingColored(
|
| 314 |
-
img_bgr, None,
|
| 315 |
-
h=
|
| 316 |
-
hColor=
|
| 317 |
-
templateWindowSize=7,
|
| 318 |
searchWindowSize=21
|
| 319 |
)
|
| 320 |
-
|
|
|
|
|
|
|
| 321 |
# Process based on model type
|
| 322 |
if model_type == "upscale":
|
|
|
|
|
|
|
| 323 |
logger.info(f"Upscaling image with {model_name}")
|
| 324 |
|
| 325 |
if model_name == "OpenCV Super Resolution":
|
| 326 |
# OpenCV super resolution
|
| 327 |
output_bgr = model.upsample(img_bgr)
|
| 328 |
-
|
| 329 |
elif model_name == "Real-ESRGAN-x4":
|
| 330 |
# Real-ESRGAN upscaling
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
fallback_model, _ = load_model("OpenCV Super Resolution")
|
| 337 |
-
output_bgr = fallback_model.upsample(img_bgr)
|
| 338 |
-
|
| 339 |
-
else:
|
| 340 |
-
# Default to OpenCV upscaling
|
| 341 |
-
sr = cv2.dnn_superres.DnnSuperResImpl_create()
|
| 342 |
-
sr.upsample(img_bgr)
|
| 343 |
-
|
| 344 |
elif model_type == "face":
|
|
|
|
|
|
|
| 345 |
logger.info(f"Enhancing face with {model_name}")
|
| 346 |
-
|
| 347 |
if model_name == "GFPGAN (Face Enhancement)":
|
|
|
|
| 348 |
try:
|
| 349 |
# GFPGAN returns (cropped_faces, restored_faces, restored_img)
|
|
|
|
| 350 |
_, _, output_bgr = model.enhance(
|
| 351 |
-
img_bgr,
|
| 352 |
-
has_aligned=False,
|
| 353 |
-
only_center_face=False,
|
| 354 |
paste_back=True
|
| 355 |
)
|
| 356 |
except Exception as e:
|
| 357 |
-
logger.error(f"Error with GFPGAN: {str(e)}")
|
| 358 |
-
#
|
| 359 |
-
|
| 360 |
-
output_bgr =
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
sr = cv2.dnn_superres.DnnSuperResImpl_create()
|
| 364 |
-
output_bgr = sr.upsample(img_bgr)
|
| 365 |
-
|
| 366 |
elif model_type == "hdr":
|
| 367 |
-
|
| 368 |
-
|
| 369 |
output_bgr = enhance_hdr(img_bgr, strength=strength)
|
| 370 |
-
|
| 371 |
else:
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
|
|
|
|
|
|
| 375 |
if sharpen > 0:
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
[
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 383 |
# Post-process and return image
|
| 384 |
enhanced_image = postprocess_image(output_bgr)
|
| 385 |
-
|
| 386 |
return "Image enhanced successfully!", enhanced_image
|
| 387 |
-
|
| 388 |
except Exception as e:
|
| 389 |
-
logger.error(f"
|
| 390 |
import traceback
|
| 391 |
traceback.print_exc()
|
| 392 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 393 |
|
| 394 |
# Gradio interface
|
| 395 |
with gr.Blocks(title="Image Upscale & Enhancement - By FebryEnsz") as demo:
|
|
@@ -397,93 +491,105 @@ with gr.Blocks(title="Image Upscale & Enhancement - By FebryEnsz") as demo:
|
|
| 397 |
"""
|
| 398 |
# 🖼️ Image Upscale & Enhancement
|
| 399 |
### By FebryEnsz
|
| 400 |
-
|
| 401 |
Upload an image and enhance it with AI-powered upscaling and enhancement.
|
| 402 |
-
|
| 403 |
**Features:**
|
| 404 |
-
- Super-resolution upscaling (4x)
|
| 405 |
-
- Face enhancement for portraits
|
| 406 |
- HDR enhancement for better contrast and details
|
|
|
|
| 407 |
"""
|
| 408 |
)
|
| 409 |
-
|
| 410 |
with gr.Row():
|
| 411 |
with gr.Column(scale=1):
|
| 412 |
-
image_input = gr.Image(label="Upload Image", type="pil")
|
| 413 |
|
| 414 |
-
|
|
|
|
| 415 |
gr.Markdown("### Enhancement Options")
|
| 416 |
model_choice = gr.Dropdown(
|
| 417 |
choices=list(MODEL_OPTIONS.keys()),
|
| 418 |
label="Model Selection",
|
| 419 |
-
value="OpenCV Super Resolution"
|
|
|
|
| 420 |
)
|
| 421 |
-
|
| 422 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
| 423 |
strength_slider = gr.Slider(
|
| 424 |
minimum=0.1,
|
| 425 |
maximum=1.0,
|
| 426 |
-
step=0.
|
| 427 |
-
label="Enhancement Strength",
|
| 428 |
value=0.8,
|
|
|
|
| 429 |
)
|
| 430 |
-
|
| 431 |
denoise_slider = gr.Slider(
|
| 432 |
minimum=0.0,
|
| 433 |
maximum=1.0,
|
| 434 |
-
step=0.
|
| 435 |
-
label="Noise Reduction",
|
| 436 |
value=0.0,
|
| 437 |
)
|
| 438 |
-
|
| 439 |
sharpen_slider = gr.Slider(
|
| 440 |
minimum=0.0,
|
| 441 |
maximum=1.0,
|
| 442 |
-
step=0.
|
| 443 |
-
label="Sharpening",
|
| 444 |
value=0.0,
|
| 445 |
)
|
| 446 |
-
|
| 447 |
enhance_button = gr.Button("✨ Enhance Image", variant="primary")
|
| 448 |
-
|
| 449 |
with gr.Column(scale=1):
|
| 450 |
output_text = gr.Textbox(label="Status")
|
| 451 |
-
output_image = gr.Image(label="Enhanced Image")
|
| 452 |
-
|
| 453 |
# Handle model change to update UI
|
|
|
|
| 454 |
def on_model_change(model_name):
|
| 455 |
model_config = MODEL_OPTIONS.get(model_name, {})
|
| 456 |
model_type = model_config.get("type", "")
|
| 457 |
-
|
| 458 |
-
# Update UI based on model type
|
| 459 |
if model_type == "hdr":
|
| 460 |
-
return gr.update(
|
| 461 |
elif model_type == "face":
|
| 462 |
-
|
|
|
|
|
|
|
| 463 |
else:
|
| 464 |
-
|
| 465 |
-
|
| 466 |
model_choice.change(on_model_change, inputs=[model_choice], outputs=[strength_slider])
|
| 467 |
-
|
| 468 |
# Connect button to function
|
| 469 |
enhance_button.click(
|
| 470 |
fn=enhance_image,
|
| 471 |
inputs=[image_input, model_choice, strength_slider, denoise_slider, sharpen_slider],
|
| 472 |
-
outputs=[output_text, output_image]
|
|
|
|
| 473 |
)
|
| 474 |
-
|
| 475 |
# Footer information
|
| 476 |
gr.Markdown(
|
| 477 |
"""
|
| 478 |
### Tips
|
| 479 |
-
- For best results with face enhancement, ensure faces are clearly visible
|
| 480 |
-
- HDR enhancement works best with images that have both bright and dark areas
|
| 481 |
-
- For noisy images, try increasing the noise reduction slider
|
| 482 |
-
|
|
|
|
| 483 |
---
|
| 484 |
-
Version 2.
|
|
|
|
| 485 |
)
|
| 486 |
|
| 487 |
# Launch the app
|
| 488 |
if __name__ == "__main__":
|
| 489 |
-
|
|
|
|
|
|
|
|
|
| 27 |
# Install required packages at runtime for Hugging Face Spaces
|
| 28 |
def install_dependencies():
|
| 29 |
logger.info("Checking and installing dependencies...")
|
| 30 |
+
|
| 31 |
packages_to_install = [
|
| 32 |
"opencv-python",
|
| 33 |
"opencv-contrib-python", # For dnn_superres module
|
| 34 |
"numpy",
|
| 35 |
"pillow",
|
| 36 |
+
"torch torchvision torchaudio", # Let pip handle the specific wheels
|
| 37 |
+
"facexlib", # Dependency for GFPGAN
|
| 38 |
+
"basicsr", # Dependency for RealESRGAN/GFPGAN
|
| 39 |
"gfpgan",
|
| 40 |
+
"realesrgan",
|
| 41 |
+
"huggingface_hub" # Ensure hf_hub_download is available
|
| 42 |
]
|
| 43 |
+
|
| 44 |
+
# Use a standard index-url or let pip find the best one
|
| 45 |
+
# Forcing CPU might prevent GPU usage if available
|
| 46 |
+
# Let's try without forcing CPU first, Hugging Face Spaces often handles this.
|
| 47 |
+
# If you specifically need CPU only, you might re-add --index-url https://download.pytorch.org/whl/cpu
|
| 48 |
|
| 49 |
for package in packages_to_install:
|
| 50 |
try:
|
|
|
|
| 52 |
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
| 53 |
except Exception as e:
|
| 54 |
logger.warning(f"Error installing {package}: {str(e)}")
|
| 55 |
+
|
| 56 |
logger.info("Dependencies installation complete")
|
| 57 |
|
| 58 |
# Try to install dependencies on startup
|
| 59 |
try:
|
| 60 |
install_dependencies()
|
| 61 |
+
# Import libraries AFTER installation
|
| 62 |
+
import cv2
|
| 63 |
+
import torch
|
| 64 |
+
import numpy as np
|
| 65 |
+
from PIL import Image, ImageEnhance
|
| 66 |
+
from huggingface_hub import hf_hub_download
|
| 67 |
+
try:
|
| 68 |
+
from realesrgan import RealESRGAN
|
| 69 |
+
except ImportError:
|
| 70 |
+
logger.warning("RealESRGAN import failed after installation attempt.")
|
| 71 |
+
RealESRGAN = None # Set to None if import fails
|
| 72 |
+
try:
|
| 73 |
+
from gfpgan import GFPGANer
|
| 74 |
+
except ImportError:
|
| 75 |
+
logger.warning("GFPGANer import failed after installation attempt.")
|
| 76 |
+
GFPGANer = None # Set to None if import fails
|
| 77 |
+
|
| 78 |
time.sleep(2) # Give some time for packages to settle
|
| 79 |
except Exception as e:
|
| 80 |
+
logger.error(f"Failed to install dependencies or import libraries: {str(e)}")
|
| 81 |
|
| 82 |
+
# Check for GPU or CPU AFTER torch is potentially installed
|
| 83 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 84 |
logger.info(f"Using device: {device}")
|
| 85 |
|
|
|
|
| 102 |
"filename": "GFPGANv1.4.pth",
|
| 103 |
"type": "face",
|
| 104 |
"method": "gfpgan",
|
| 105 |
+
"scale": 1 # GFPGAN is primarily for face restoration, upscaling is secondary/handled by bg_upsampler
|
| 106 |
},
|
| 107 |
"HDR Enhancement": {
|
| 108 |
"type": "hdr",
|
|
|
|
| 117 |
# Function to load the selected model with robust fallbacks
|
| 118 |
def load_model(model_name):
|
| 119 |
global model_cache
|
| 120 |
+
|
| 121 |
# Return cached model if available
|
| 122 |
if model_name in model_cache:
|
| 123 |
logger.info(f"Using cached model: {model_name}")
|
| 124 |
return model_cache[model_name]
|
| 125 |
+
|
| 126 |
logger.info(f"Loading model: {model_name}")
|
| 127 |
config = MODEL_OPTIONS.get(model_name)
|
| 128 |
if not config:
|
| 129 |
return None, f"Model {model_name} not found in configuration"
|
| 130 |
+
|
| 131 |
model_type = config["type"]
|
| 132 |
+
|
| 133 |
try:
|
| 134 |
+
# OpenCV based models (always available as fallback if opencv-contrib is installed)
|
| 135 |
if config["method"] == "opencv":
|
| 136 |
logger.info("Loading OpenCV Super Resolution model")
|
| 137 |
+
try:
|
| 138 |
+
sr = cv2.dnn_superres.DnnSuperResImpl_create()
|
| 139 |
+
|
| 140 |
+
# Use EDSR as default model
|
| 141 |
+
model_path = hf_hub_download(
|
| 142 |
+
repo_id="eugenesiow/edsr",
|
| 143 |
+
filename="EDSR_x4.pb",
|
| 144 |
+
cache_dir=CACHE_DIR
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
sr.readModel(model_path)
|
| 148 |
+
sr.setModel("edsr", 4)
|
| 149 |
+
|
| 150 |
+
# Set backend to cuda if available
|
| 151 |
+
if torch.cuda.is_available():
|
| 152 |
+
sr.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
|
| 153 |
+
sr.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
|
| 154 |
+
|
| 155 |
+
model_cache[model_name] = (sr, model_type)
|
| 156 |
+
return sr, model_type
|
| 157 |
+
except Exception as e:
|
| 158 |
+
logger.error(f"Error loading OpenCV SR model: {str(e)}")
|
| 159 |
+
# Fallback to None if OpenCV SR fails
|
| 160 |
+
return None, f"Failed to load OpenCV SR model: {str(e)}"
|
| 161 |
+
|
| 162 |
+
|
| 163 |
# Real-ESRGAN models
|
| 164 |
elif config["method"] == "realesrgan":
|
| 165 |
+
if RealESRGAN is None:
|
| 166 |
+
logger.warning("RealESRGAN class not found, falling back to OpenCV SR.")
|
| 167 |
+
return load_model("OpenCV Super Resolution") # Fallback
|
| 168 |
+
|
| 169 |
try:
|
|
|
|
| 170 |
logger.info("Loading Real-ESRGAN model")
|
| 171 |
+
|
| 172 |
model_path = hf_hub_download(
|
| 173 |
repo_id=config["repo_id"],
|
| 174 |
filename=config["filename"],
|
| 175 |
cache_dir=CACHE_DIR
|
| 176 |
)
|
| 177 |
+
|
| 178 |
+
# Initialize RealESRGAN with the correct device
|
| 179 |
model = RealESRGAN(device, scale=config["scale"])
|
| 180 |
model.load_weights(model_path)
|
| 181 |
+
|
| 182 |
model_cache[model_name] = (model, model_type)
|
| 183 |
return model, model_type
|
| 184 |
+
except Exception as e:
|
| 185 |
+
logger.error(f"Error loading Real-ESRGAN model: {str(e)}")
|
| 186 |
+
logger.warning("Falling back to OpenCV Super Resolution")
|
| 187 |
+
return load_model("OpenCV Super Resolution") # Fallback
|
| 188 |
+
|
| 189 |
# GFPGAN for face enhancement
|
| 190 |
elif config["method"] == "gfpgan":
|
| 191 |
+
if GFPGANer is None:
|
| 192 |
+
logger.warning("GFPGANer class not found, falling back to OpenCV SR.")
|
| 193 |
+
return load_model("OpenCV Super Resolution") # Fallback
|
| 194 |
+
|
| 195 |
try:
|
|
|
|
| 196 |
logger.info("Loading GFPGAN model")
|
| 197 |
+
|
| 198 |
model_path = hf_hub_download(
|
| 199 |
repo_id=config["repo_id"],
|
| 200 |
filename=config["filename"],
|
| 201 |
cache_dir=CACHE_DIR
|
| 202 |
)
|
| 203 |
+
|
| 204 |
+
# GFPGANer initialization
|
| 205 |
+
# Note: If you want background upsampling with GFPGAN, you need to initialize bg_upsampler
|
| 206 |
+
# e.g., bg_upsampler=RealESRGANer(model_path='...', model_name='RealESRGAN_x4plus.pth', ...)
|
| 207 |
+
# For simplicity and focusing on face, bg_upsampler=None is used here.
|
| 208 |
face_enhancer = GFPGANer(
|
| 209 |
model_path=model_path,
|
| 210 |
+
upscale=config["scale"], # This upscale might be ignored if paste_back is True and no bg_upsampler
|
| 211 |
+
arch='clean', # Use 'clean' arch for GFPGANv1.4
|
| 212 |
channel_multiplier=2,
|
| 213 |
+
bg_upsampler=None # No background upsampling
|
| 214 |
)
|
| 215 |
+
|
| 216 |
model_cache[model_name] = (face_enhancer, model_type)
|
| 217 |
return face_enhancer, model_type
|
| 218 |
+
except Exception as e:
|
| 219 |
+
logger.error(f"Error loading GFPGAN model: {str(e)}")
|
| 220 |
+
logger.warning("Falling back to OpenCV Super Resolution")
|
| 221 |
+
return load_model("OpenCV Super Resolution") # Fallback
|
| 222 |
+
|
| 223 |
# HDR Enhancement (custom implementation)
|
| 224 |
elif config["method"] == "custom":
|
| 225 |
# No model to load for custom HDR
|
| 226 |
model_cache[model_name] = (None, model_type)
|
| 227 |
return None, model_type
|
| 228 |
+
|
| 229 |
else:
|
| 230 |
+
return None, f"Unknown model method: {config['method']}"
|
| 231 |
+
|
| 232 |
except Exception as e:
|
| 233 |
+
logger.error(f"Unexpected error during model loading for {model_name}: {str(e)}")
|
| 234 |
import traceback
|
| 235 |
traceback.print_exc()
|
| 236 |
+
|
| 237 |
+
# Always provide a fallback method if the desired one completely fails
|
| 238 |
if model_name != "OpenCV Super Resolution":
|
| 239 |
+
logger.info("Critical error loading model, falling back to OpenCV Super Resolution")
|
| 240 |
return load_model("OpenCV Super Resolution")
|
| 241 |
else:
|
| 242 |
+
# If OpenCV SR itself fails, something is fundamentally wrong
|
| 243 |
+
return None, f"Failed to load any model, including fallback: {str(e)}"
|
| 244 |
+
|
| 245 |
|
| 246 |
# Function to preprocess image for processing
|
| 247 |
def preprocess_image(image):
|
| 248 |
"""Convert PIL image to numpy array for processing"""
|
| 249 |
if image is None:
|
| 250 |
return None
|
| 251 |
+
|
| 252 |
if isinstance(image, Image.Image):
|
| 253 |
# Convert PIL image to numpy array
|
| 254 |
img = np.array(image)
|
| 255 |
else:
|
| 256 |
+
# Assume it's already a numpy array (e.g., from Gradio internal handling)
|
| 257 |
img = image
|
| 258 |
+
|
| 259 |
# Handle grayscale images by converting to RGB
|
| 260 |
if len(img.shape) == 2:
|
| 261 |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
| 262 |
+
|
| 263 |
# Handle RGBA images by removing alpha channel
|
| 264 |
if img.shape[2] == 4:
|
| 265 |
img = img[:, :, :3]
|
| 266 |
+
|
| 267 |
# Convert RGB to BGR for OpenCV processing
|
| 268 |
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
| 269 |
+
|
| 270 |
return img_bgr
|
| 271 |
|
| 272 |
# Function to postprocess image for display
|
|
|
|
| 274 |
"""Convert processed BGR image back to RGB PIL image"""
|
| 275 |
if img_bgr is None:
|
| 276 |
return None
|
| 277 |
+
|
| 278 |
# Ensure image is uint8
|
| 279 |
if img_bgr.dtype != np.uint8:
|
| 280 |
+
# Ensure the range is correct before casting
|
| 281 |
+
img_bgr = np.clip(img_bgr, 0, 255)
|
| 282 |
+
img_bgr = img_bgr.astype(np.uint8)
|
| 283 |
+
|
| 284 |
# Convert BGR to RGB for PIL
|
| 285 |
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
|
| 286 |
+
|
| 287 |
return Image.fromarray(img_rgb)
|
| 288 |
|
| 289 |
# HDR enhancement function
|
|
|
|
| 291 |
"""Custom HDR enhancement using OpenCV"""
|
| 292 |
# Convert BGR to RGB
|
| 293 |
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
|
| 294 |
+
|
| 295 |
+
# Convert to float32 for processing, range [0, 1]
|
| 296 |
img_float = img_rgb.astype(np.float32) / 255.0
|
| 297 |
+
|
| 298 |
+
# --- Exposure Fusion based approach (more robust) ---
|
| 299 |
+
try:
|
| 300 |
+
# Estimate camera response function (merge_mertens is more robust)
|
| 301 |
+
merge_mertens = cv2.createMergeMertens(contrast_weight=1.0, saturation_weight=1.0, exposure_weight=0.0)
|
| 302 |
+
# You'd ideally need multiple exposures for true HDR merge.
|
| 303 |
+
# Simulating this by generating slightly adjusted exposures might not be ideal.
|
| 304 |
+
# Let's use a simpler single-image tone mapping or CLAHE on different channels.
|
| 305 |
+
|
| 306 |
+
# Using CLAHE on L channel (from LAB) and potentially V channel (from HSV)
|
| 307 |
+
img_lab = cv2.cvtColor(img_float, cv2.COLOR_RGB2LAB)
|
| 308 |
+
l, a, b = cv2.split(img_lab)
|
| 309 |
+
|
| 310 |
+
# Apply CLAHE to L channel
|
| 311 |
+
# ClipLimit proportional to strength
|
| 312 |
+
clahe_l = cv2.createCLAHE(clipLimit=max(1.0, 5.0 * strength), tileGridSize=(8, 8))
|
| 313 |
+
# CLAHE works on uint8, so scale L channel
|
| 314 |
+
l_uint8 = np.clip(l * 255.0, 0, 255).astype(np.uint8)
|
| 315 |
+
l_enhanced_uint8 = clahe_l.apply(l_uint8)
|
| 316 |
+
l_enhanced = l_enhanced_uint8.astype(np.float32) / 255.0
|
| 317 |
+
|
| 318 |
+
# Blend original and enhanced L channel based on strength
|
| 319 |
+
l_final = l * (1 - strength) + l_enhanced * strength
|
| 320 |
+
|
| 321 |
+
# Merge LAB and convert back to RGB
|
| 322 |
+
img_lab_enhanced = cv2.merge([l_final, a, b])
|
| 323 |
+
img_rgb_enhanced = cv2.cvtColor(img_lab_enhanced, cv2.COLOR_LAB2RGB)
|
| 324 |
+
|
| 325 |
+
# --- Additional Enhancements (optional, based on strength) ---
|
| 326 |
+
# Vibrance/Saturation adjustment (HSV)
|
| 327 |
+
img_hsv = cv2.cvtColor(img_rgb_enhanced, cv2.COLOR_RGB2HSV)
|
| 328 |
+
h, s, v = cv2.split(img_hsv)
|
| 329 |
+
|
| 330 |
+
# Increase saturation, more for less saturated pixels
|
| 331 |
+
saturation_factor = 0.4 * strength # Adjust factor as needed
|
| 332 |
+
s_enhanced = np.clip(s + (s * saturation_factor * (1 - s)), 0, 1)
|
| 333 |
+
|
| 334 |
+
# Slight brightness adjustment
|
| 335 |
+
brightness_factor = 0.1 * strength
|
| 336 |
+
v_enhanced = np.clip(v + (v * brightness_factor), 0, 1)
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
# Merge HSV and convert back to RGB
|
| 340 |
+
img_rgb_enhanced_hsv = cv2.cvtColor(cv2.merge([h, s_enhanced, v_enhanced]), cv2.COLOR_HSV2RGB)
|
| 341 |
+
|
| 342 |
+
# --- Subtle Detail Enhancement (Unsharp Masking effect) ---
|
| 343 |
+
# Convert back to uint8 for blurring
|
| 344 |
+
img_uint8_detail = (np.clip(img_rgb_enhanced_hsv, 0, 1) * 255).astype(np.uint8)
|
| 345 |
+
blur = cv2.GaussianBlur(img_uint8_detail, (0, 0), 5) # Kernel size 5, sigma automatically calculated
|
| 346 |
+
# Convert blur back to float for calculation
|
| 347 |
+
blur_float = blur.astype(np.float32) / 255.0
|
| 348 |
+
|
| 349 |
+
detail = img_rgb_enhanced_hsv - blur_float
|
| 350 |
+
# Add detail back, scaled by strength
|
| 351 |
+
img_final_float = np.clip(img_rgb_enhanced_hsv + detail * (0.8 * strength), 0, 1)
|
| 352 |
+
|
| 353 |
+
# Convert back to BGR (uint8) for output
|
| 354 |
+
img_bgr_enhanced = (img_final_float * 255).astype(np.uint8)
|
| 355 |
+
img_bgr_enhanced = cv2.cvtColor(img_bgr_enhanced, cv2.COLOR_RGB2BGR)
|
| 356 |
+
|
| 357 |
+
return img_bgr_enhanced
|
| 358 |
+
|
| 359 |
+
except Exception as e:
|
| 360 |
+
logger.error(f"Error during HDR enhancement: {str(e)}")
|
| 361 |
+
# Return original image if enhancement fails
|
| 362 |
+
return img_bgr
|
| 363 |
+
|
| 364 |
|
| 365 |
# Main image enhancement function
|
| 366 |
def enhance_image(image, model_name, strength=1.0, denoise=0.0, sharpen=0.0):
|
| 367 |
"""Enhance image using selected model with additional processing options"""
|
| 368 |
if image is None:
|
| 369 |
return "Please upload an image.", None
|
| 370 |
+
|
| 371 |
try:
|
| 372 |
# Load model
|
| 373 |
+
model, model_info = load_model(model_name)
|
| 374 |
+
if isinstance(model_info, str) and model_info.startswith("Failed"):
|
| 375 |
+
# If loading fails, model is None, info is the error message
|
| 376 |
+
return model_info, None
|
| 377 |
+
|
| 378 |
+
model_type = model_info # model_info now holds the model type string
|
| 379 |
+
|
| 380 |
# Preprocess image
|
| 381 |
img_bgr = preprocess_image(image)
|
| 382 |
if img_bgr is None:
|
| 383 |
return "Failed to process image", None
|
| 384 |
+
|
| 385 |
# Apply denoising if requested
|
| 386 |
if denoise > 0:
|
| 387 |
+
logger.info(f"Applying denoising with strength {denoise}")
|
| 388 |
+
# Adjust h and hColor based on denoise slider
|
| 389 |
+
# Recommended range for h is 10 for color images (adjust based on noise level)
|
| 390 |
+
h_val = int(denoise * 20 + 10) # Map 0-1 slider to approx 10-30 h value
|
| 391 |
img_bgr = cv2.fastNlMeansDenoisingColored(
|
| 392 |
+
img_bgr, None,
|
| 393 |
+
h=h_val,
|
| 394 |
+
hColor=h_val,
|
| 395 |
+
templateWindowSize=7,
|
| 396 |
searchWindowSize=21
|
| 397 |
)
|
| 398 |
+
|
| 399 |
+
output_bgr = img_bgr # Initialize output with potentially denoised image
|
| 400 |
+
|
| 401 |
# Process based on model type
|
| 402 |
if model_type == "upscale":
|
| 403 |
+
if model is None:
|
| 404 |
+
return f"Upscaling model '{model_name}' is not loaded or available.", None
|
| 405 |
logger.info(f"Upscaling image with {model_name}")
|
| 406 |
|
| 407 |
if model_name == "OpenCV Super Resolution":
|
| 408 |
# OpenCV super resolution
|
| 409 |
output_bgr = model.upsample(img_bgr)
|
| 410 |
+
|
| 411 |
elif model_name == "Real-ESRGAN-x4":
|
| 412 |
# Real-ESRGAN upscaling
|
| 413 |
+
# Real-ESRGAN model object has a 'predict' method
|
| 414 |
+
output_bgr = model.predict(img_bgr)
|
| 415 |
+
|
| 416 |
+
# No else needed, as load_model should handle fallbacks
|
| 417 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 418 |
elif model_type == "face":
|
| 419 |
+
if model is None:
|
| 420 |
+
return f"Face enhancement model '{model_name}' is not loaded or available.", None
|
| 421 |
logger.info(f"Enhancing face with {model_name}")
|
| 422 |
+
|
| 423 |
if model_name == "GFPGAN (Face Enhancement)":
|
| 424 |
+
# GFPGAN model object has an 'enhance' method
|
| 425 |
try:
|
| 426 |
# GFPGAN returns (cropped_faces, restored_faces, restored_img)
|
| 427 |
+
# restored_img is the pasted-back result
|
| 428 |
_, _, output_bgr = model.enhance(
|
| 429 |
+
img_bgr,
|
| 430 |
+
has_aligned=False,
|
| 431 |
+
only_center_face=False,
|
| 432 |
paste_back=True
|
| 433 |
)
|
| 434 |
except Exception as e:
|
| 435 |
+
logger.error(f"Error enhancing face with GFPGAN: {str(e)}")
|
| 436 |
+
# If GFPGAN fails, don't just return, try basic upscaling or original
|
| 437 |
+
# For now, let's just log and return original or denoised image
|
| 438 |
+
output_bgr = img_bgr # Keep the denoised (or original) image
|
| 439 |
+
return f"Error applying GFPGAN: {str(e)}. Returning base image.", postprocess_image(output_bgr)
|
| 440 |
+
|
|
|
|
|
|
|
|
|
|
| 441 |
elif model_type == "hdr":
|
| 442 |
+
# HDR enhancement doesn't use an external model object, it's a function call
|
| 443 |
+
logger.info(f"Applying HDR enhancement with strength {strength}")
|
| 444 |
output_bgr = enhance_hdr(img_bgr, strength=strength)
|
| 445 |
+
|
| 446 |
else:
|
| 447 |
+
# Should not happen if MODEL_OPTIONS is correct
|
| 448 |
+
return f"Unknown model type for processing: {model_type}", None
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
# Apply sharpening if requested (apply to the output of the main process)
|
| 452 |
if sharpen > 0:
|
| 453 |
+
logger.info(f"Applying sharpening with strength {sharpen}")
|
| 454 |
+
# Simple unsharp mask effect
|
| 455 |
+
kernel = np.array([
|
| 456 |
+
[0, -1, 0],
|
| 457 |
+
[-1, 5, -1],
|
| 458 |
+
[0, -1, 0]
|
| 459 |
+
], np.float32)
|
| 460 |
+
# We can adjust the strength by blending original and sharpened, or using a kernel with varying center weight
|
| 461 |
+
# A simpler approach is blending:
|
| 462 |
+
sharpened_img = cv2.filter2D(output_bgr, -1, kernel)
|
| 463 |
+
# Blend original output and sharpened output
|
| 464 |
+
output_bgr = cv2.addWeighted(output_bgr, 1.0 - sharpen, sharpened_img, sharpen, 0)
|
| 465 |
+
|
| 466 |
+
|
| 467 |
# Post-process and return image
|
| 468 |
enhanced_image = postprocess_image(output_bgr)
|
| 469 |
+
|
| 470 |
return "Image enhanced successfully!", enhanced_image
|
| 471 |
+
|
| 472 |
except Exception as e:
|
| 473 |
+
logger.error(f"An error occurred during image processing: {str(e)}")
|
| 474 |
import traceback
|
| 475 |
traceback.print_exc()
|
| 476 |
+
# Attempt to return original image on error
|
| 477 |
+
if image is not None:
|
| 478 |
+
try:
|
| 479 |
+
original_img_pil = Image.fromarray(cv2.cvtColor(preprocess_image(image), cv2.COLOR_BGR2RGB))
|
| 480 |
+
return f"Processing failed: {str(e)}. Returning original image.", original_img_pil
|
| 481 |
+
except Exception as post_e:
|
| 482 |
+
logger.error(f"Failed to return original image after error: {str(post_e)}")
|
| 483 |
+
return f"Processing failed: {str(e)}. Could not return image.", None
|
| 484 |
+
else:
|
| 485 |
+
return f"Processing failed: {str(e)}. No image provided.", None
|
| 486 |
+
|
| 487 |
|
| 488 |
# Gradio interface
|
| 489 |
with gr.Blocks(title="Image Upscale & Enhancement - By FebryEnsz") as demo:
|
|
|
|
| 491 |
"""
|
| 492 |
# 🖼️ Image Upscale & Enhancement
|
| 493 |
### By FebryEnsz
|
| 494 |
+
|
| 495 |
Upload an image and enhance it with AI-powered upscaling and enhancement.
|
| 496 |
+
|
| 497 |
**Features:**
|
| 498 |
+
- Super-resolution upscaling (4x) using Real-ESRGAN or OpenCV
|
| 499 |
+
- Face enhancement for portraits using GFPGAN
|
| 500 |
- HDR enhancement for better contrast and details
|
| 501 |
+
- Additional Denoise and Sharpen options
|
| 502 |
"""
|
| 503 |
)
|
| 504 |
+
|
| 505 |
with gr.Row():
|
| 506 |
with gr.Column(scale=1):
|
| 507 |
+
image_input = gr.Image(label="Upload Image", type="pil", image_mode="RGB") # Explicitly request RGB
|
| 508 |
|
| 509 |
+
# Changed gr.Box() to gr.Group()
|
| 510 |
+
with gr.Group(): # Replaced gr.Box()
|
| 511 |
gr.Markdown("### Enhancement Options")
|
| 512 |
model_choice = gr.Dropdown(
|
| 513 |
choices=list(MODEL_OPTIONS.keys()),
|
| 514 |
label="Model Selection",
|
| 515 |
+
value="OpenCV Super Resolution",
|
| 516 |
+
allow_flagging="never" # Optional: disable flagging
|
| 517 |
)
|
| 518 |
+
|
| 519 |
with gr.Accordion("Advanced Settings", open=False):
|
| 520 |
+
# Keep strength_slider visible but update label based on model
|
| 521 |
strength_slider = gr.Slider(
|
| 522 |
minimum=0.1,
|
| 523 |
maximum=1.0,
|
| 524 |
+
step=0.05, # Added more steps for finer control
|
| 525 |
+
label="Enhancement Strength", # Default label
|
| 526 |
value=0.8,
|
| 527 |
+
visible=True # Ensure it's visible
|
| 528 |
)
|
| 529 |
+
|
| 530 |
denoise_slider = gr.Slider(
|
| 531 |
minimum=0.0,
|
| 532 |
maximum=1.0,
|
| 533 |
+
step=0.05, # Added more steps
|
| 534 |
+
label="Noise Reduction Strength",
|
| 535 |
value=0.0,
|
| 536 |
)
|
| 537 |
+
|
| 538 |
sharpen_slider = gr.Slider(
|
| 539 |
minimum=0.0,
|
| 540 |
maximum=1.0,
|
| 541 |
+
step=0.05, # Added more steps
|
| 542 |
+
label="Sharpening Strength",
|
| 543 |
value=0.0,
|
| 544 |
)
|
| 545 |
+
|
| 546 |
enhance_button = gr.Button("✨ Enhance Image", variant="primary")
|
| 547 |
+
|
| 548 |
with gr.Column(scale=1):
|
| 549 |
output_text = gr.Textbox(label="Status")
|
| 550 |
+
output_image = gr.Image(label="Enhanced Image", type="pil") # Specify type="pil" consistently
|
| 551 |
+
|
| 552 |
# Handle model change to update UI
|
| 553 |
+
# This function only needs to update the label of the strength slider
|
| 554 |
def on_model_change(model_name):
|
| 555 |
model_config = MODEL_OPTIONS.get(model_name, {})
|
| 556 |
model_type = model_config.get("type", "")
|
| 557 |
+
|
|
|
|
| 558 |
if model_type == "hdr":
|
| 559 |
+
return gr.update(label="HDR Intensity")
|
| 560 |
elif model_type == "face":
|
| 561 |
+
return gr.update(label="Face Enhancement Strength")
|
| 562 |
+
elif model_type == "upscale":
|
| 563 |
+
return gr.update(label="Enhancement Strength") # Keep a generic label for upscale
|
| 564 |
else:
|
| 565 |
+
return gr.update(label="Enhancement Strength") # Default
|
| 566 |
+
|
| 567 |
model_choice.change(on_model_change, inputs=[model_choice], outputs=[strength_slider])
|
| 568 |
+
|
| 569 |
# Connect button to function
|
| 570 |
enhance_button.click(
|
| 571 |
fn=enhance_image,
|
| 572 |
inputs=[image_input, model_choice, strength_slider, denoise_slider, sharpen_slider],
|
| 573 |
+
outputs=[output_text, output_image],
|
| 574 |
+
api_name="enhance" # Optional: give it an API name
|
| 575 |
)
|
| 576 |
+
|
| 577 |
# Footer information
|
| 578 |
gr.Markdown(
|
| 579 |
"""
|
| 580 |
### Tips
|
| 581 |
+
- For best results with face enhancement, ensure faces are clearly visible.
|
| 582 |
+
- HDR enhancement works best with images that have both bright and dark areas.
|
| 583 |
+
- For noisy images, try increasing the noise reduction slider.
|
| 584 |
+
- Sharpening can add detail but may also increase noise if applied too strongly.
|
| 585 |
+
|
| 586 |
---
|
| 587 |
+
Version 2.1 | Running on: """ + (f"GPU 🚀 ({torch.cuda.get_device_name(0)})" if torch.cuda.is_available() else "CPU ⚙️") + """
|
| 588 |
+
"""
|
| 589 |
)
|
| 590 |
|
| 591 |
# Launch the app
|
| 592 |
if __name__ == "__main__":
|
| 593 |
+
# Use share=True for a temporary public link (useful for debugging, but not needed for Spaces)
|
| 594 |
+
# Use enable_queue=True for better handling of concurrent requests on Spaces
|
| 595 |
+
demo.launch(enable_queue=True)
|