Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from pyannote.audio import Inference | |
| import numpy as np | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| import os | |
| # β Use HF token from Hugging Face Space secrets | |
| hf_token = os.getenv("HF_TOKEN") | |
| # π Load model with authentication | |
| model = Inference("pyannote/embedding", use_auth_token=hf_token, window="whole") | |
| # π§ Load known speaker embeddings | |
| speaker_embeddings = {} | |
| for speaker in os.listdir("known_speakers"): | |
| if speaker.endswith(".wav"): | |
| emb = model(f"known_speakers/{speaker}") | |
| speaker_embeddings[speaker.replace(".wav", "")] = emb | |
| def identify_speaker(audio): | |
| input_embedding = model(audio) | |
| best_score = -1 | |
| best_speaker = "Unknown" | |
| for name, emb in speaker_embeddings.items(): | |
| score = cosine_similarity(input_embedding.numpy().reshape(1, -1), emb.numpy().reshape(1, -1))[0][0] | |
| if score > best_score: | |
| best_score = score | |
| best_speaker = name | |
| return f"π§ Identified Speaker: {best_speaker}\nπ§ͺ Similarity Score: {best_score:.2f}" | |
| # π Launch Gradio UI | |
| gr.Interface( | |
| fn=identify_speaker, | |
| inputs=gr.Audio(source="microphone", type="filepath", label="ποΈ Upload or record voice"), | |
| outputs="text", | |
| title="π€ Speaker Identification App", | |
| description="Upload a voice clip to identify the speaker." | |
| ).launch() | |