Spaces:
Runtime error
Runtime error
| import os | |
| import gradio as gr | |
| import copy | |
| from llama_cpp import Llama | |
| from huggingface_hub import hf_hub_download | |
| import chromadb | |
| from sentence_transformers import SentenceTransformer | |
| import logging | |
| # Initialize logging | |
| logging.basicConfig(level=logging.INFO) | |
| # Initialize the Llama model | |
| try: | |
| llm = Llama( | |
| # model_path="./models/Phi-3-mini-4k-instruct-gguf", | |
| model_path = "Ankitajadhav/Phi-3-mini-4k-instruct-q4.gguf" | |
| n_ctx=2048, | |
| n_gpu_layers=50, # Adjust based on your VRAM | |
| ) | |
| logging.info("Llama model loaded successfully.") | |
| except Exception as e: | |
| logging.error(f"Error loading Llama model: {e}") | |
| raise | |
| # Initialize ChromaDB Vector Store | |
| class VectorStore: | |
| def __init__(self, collection_name): | |
| self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1') | |
| self.chroma_client = chromadb.Client() | |
| self.collection = self.chroma_client.create_collection(name=collection_name) | |
| def populate_vectors(self, texts, ids): | |
| embeddings = self.embedding_model.encode(texts, batch_size=32).tolist() | |
| for text, embedding, doc_id in zip(texts, embeddings, ids): | |
| self.collection.add(embeddings=[embedding], documents=[text], ids=[doc_id]) | |
| def search_context(self, query, n_results=1): | |
| query_embedding = self.embedding_model.encode([query]).tolist() | |
| results = self.collection.query(query_embeddings=query_embedding, n_results=n_results) | |
| return results['documents'] | |
| # Example initialization (assuming you've already populated the vector store) | |
| vector_store = VectorStore("embedding_vector") | |
| def generate_text( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| # Retrieve context from vector store | |
| context_results = vector_store.search_context(message, n_results=1) | |
| context = context_results[0] if context_results else "" | |
| input_prompt = f"[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n {context}\n" | |
| for interaction in history: | |
| input_prompt += f"{interaction[0]} [/INST] {interaction[1]} </s><s> [INST] " | |
| input_prompt += f"{message} [/INST] " | |
| logging.info("Input prompt:\n%s", input_prompt) # Debugging output | |
| temp = "" | |
| try: | |
| output = llm( | |
| input_prompt, | |
| temperature=temperature, | |
| top_p=top_p, | |
| top_k=40, | |
| repeat_penalty=1.1, | |
| max_tokens=max_tokens, | |
| stop=["", " \n", "ASSISTANT:", "USER:", "SYSTEM:"], | |
| stream=True, | |
| ) | |
| for out in output: | |
| temp += out["choices"][0]["text"] | |
| logging.info("Model output:\n%s", temp) # Log model output | |
| yield temp | |
| except Exception as e: | |
| logging.error(f"Error during text generation: {e}") | |
| yield "An error occurred during text generation." | |
| # Define the Gradio interface | |
| demo = gr.ChatInterface( | |
| generate_text, | |
| examples=[ | |
| ["I have leftover rice, what can I make out of it?"], | |
| ["Can I make lunch for two people with this?"], | |
| ["Some good dessert with leftover cake"] | |
| ], | |
| cache_examples=False, | |
| retry_btn=None, | |
| undo_btn="Delete Previous", | |
| clear_btn="Clear", | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |