Spaces:
Sleeping
Sleeping
| # Prerequisites | |
| from transformers import pipeline | |
| import json | |
| import pandas as pd | |
| import gradio as gr | |
| # get candidate labels | |
| with open("packing_label_structure.json", "r") as file: | |
| candidate_labels = json.load(file) | |
| keys_list = list(candidate_labels.keys()) | |
| # Load test data (in list of dictionaries) | |
| with open("test_data.json", "r") as file: | |
| packing_data = json.load(file) | |
| # function and gradio app | |
| model_name = "facebook/bart-large-mnli" | |
| classifier = pipeline("zero-shot-classification", model=model_name) | |
| cut_off = 0.5 # used to choose which activities are relevant | |
| def classify(#model_name, | |
| trip_descr, cut_off): | |
| # Create an empty DataFrame with specified columns | |
| df = pd.DataFrame(columns=['superclass', 'pred_class']) | |
| for i, key in enumerate(keys_list): | |
| if key == 'activities': | |
| result = classifier(trip_descr, candidate_labels[key], multi_label=True) | |
| indices = [i for i, score in enumerate(result['scores']) if score > cut_off] | |
| classes = [result['labels'][i] for i in indices] | |
| else: | |
| result = classifier(trip_descr, candidate_labels[key]) | |
| classes = result["labels"][0] | |
| df.loc[i] = [key, classes] | |
| return df | |
| demo = gr.Interface( | |
| fn=classify, | |
| inputs=[ | |
| #gr.Textbox(label="Model name", value = "facebook/bart-large-mnli"), | |
| gr.Textbox(label="Trip description"), | |
| gr.Number(label="Activity cut-off", value = 0.5), | |
| ], | |
| outputs="dataframe", | |
| title="Trip classification", | |
| description="Enter a text describing your trip", | |
| ) | |
| # Launch the Gradio app | |
| if __name__ == "__main__": | |
| demo.launch() |