Spaces:
Sleeping
Sleeping
File size: 26,071 Bytes
b9157b9 91db1e9 b9157b9 91db1e9 b9157b9 70178db b9157b9 70178db b9157b9 70178db b9157b9 7bc1042 b9157b9 70178db b9157b9 70178db b9157b9 7bc1042 b9157b9 70178db b9157b9 7bc1042 b9157b9 91db1e9 b9157b9 7bc1042 b9157b9 7bc1042 b9157b9 7bc1042 b9157b9 7bc1042 b9157b9 7bc1042 b9157b9 7bc1042 b9157b9 7bc1042 b9157b9 91db1e9 b9157b9 91db1e9 b9157b9 8b6417b b9157b9 7bc1042 b9157b9 7bc1042 b9157b9 7bc1042 b9157b9 7bc1042 b9157b9 7bc1042 b9157b9 7bc1042 b9157b9 7bc1042 b9157b9 7bc1042 b9157b9 7bc1042 a8586cd 7bc1042 b9157b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 |
{
"cells": [
{
"cell_type": "markdown",
"id": "fce70006-809b-4c98-b89c-00910b8bbea1",
"metadata": {},
"source": [
"Implementation for blog post"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "1eaa3a9f-0b39-4d77-91d6-f935d226ac98",
"metadata": {},
"outputs": [],
"source": [
"import math\n",
"import pickle\n",
"import os\n",
"import time\n",
"import matplotlib.pyplot as plt\n",
"from tabulate import tabulate\n",
"\n",
"from transformers import pipeline\n",
"import json\n",
"import pandas as pd\n",
"\n",
"# Get candidate labels\n",
"with open(\"packing_label_structure.json\", \"r\") as file:\n",
" candidate_labels = json.load(file)\n",
"keys_list = list(candidate_labels.keys())\n",
"\n",
"# Load test data (list of dictionaries)\n",
"# with open(\"test_data.json\", \"r\") as file:\n",
"# packing_data = json.load(file)\n",
"# Extract trip descriptions and classification (trip_types)\n",
"# trip_descriptions = [trip['description'] for trip in packing_data]\n",
"# trip_types = [trip['trip_types'] for trip in packing_data]\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "bb1bc7ed-227e-4c0b-b769-ead4daf01c57",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" activity_type :\n",
"\t hut trek (summer)\n",
"\t hut trek (winter)\n",
"\t camping trip (wild camping)\n",
"\t camping trip (campground)\n",
"\t ski tour / skitour\n",
"\t snowboard / splitboard trip\n",
"\t long-distance hike / thru-hike\n",
"\t digital nomad trip\n",
"\t city trip\n",
"\t road trip (car/camper)\n",
"\t festival trip\n",
"\t yoga / wellness retreat\n",
"\t micro-adventure / weekend trip\n",
"\t beach vacation\n",
"\t cultural exploration\n",
"\t nature escape\n",
"\n",
" activities :\n",
"\t swimming\n",
"\t going to the beach\n",
"\t relaxing\n",
"\t sightseeing\n",
"\t biking\n",
"\t running\n",
"\t skiing\n",
"\t cross-country skiing\n",
"\t ski touring\n",
"\t hiking\n",
"\t hut-to-hut hiking\n",
"\t rock climbing\n",
"\t ice climbing\n",
"\t snowshoe hiking\n",
"\t kayaking / canoeing\n",
"\t stand-up paddleboarding (SUP)\n",
"\t snorkeling\n",
"\t scuba diving\n",
"\t surfing\n",
"\t paragliding\n",
"\t horseback riding\n",
"\t photography\n",
"\t fishing\n",
"\t rafting\n",
"\t yoga\n",
"\n",
" climate_or_season :\n",
"\t cold destination / winter\n",
"\t warm destination / summer\n",
"\t variable weather / spring / autumn\n",
"\t tropical / humid\n",
"\t dry / desert-like\n",
"\t rainy climate\n",
"\n",
" style_or_comfort :\n",
"\t ultralight\n",
"\t lightweight (but comfortable)\n",
"\t luxury (including evening wear)\n",
"\t minimalist\n",
"\n",
" dress_code :\n",
"\t casual\n",
"\t formal (business trip)\n",
"\t conservative\n",
"\n",
" accommodation :\n",
"\t indoor\n",
"\t huts with half board\n",
"\t sleeping in a tent\n",
"\t sleeping in a car\n",
"\n",
" transportation :\n",
"\t own vehicle\n",
"\t no own vehicle\n",
"\n",
" special_conditions :\n",
"\t off-grid / no electricity\n",
"\t self-supported (bring your own cooking gear)\n",
"\t travel with children\n",
"\t pet-friendly\n",
"\t snow and ice\n",
"\t high alpine terrain\n",
"\t snow, ice and avalanche-prone terrain\n",
"\t no special conditions to consider\n",
"\n",
" trip_length_days :\n",
"\t 1 day\n",
"\t 2 days\n",
"\t 3 days\n",
"\t 4 days\n",
"\t 5 days\n",
"\t 6 days\n",
"\t 7 days\n",
"\t 7+ days\n"
]
}
],
"source": [
"for key in candidate_labels:\n",
" print(\"\\n\", key, \":\")\n",
" for item in candidate_labels[key]:\n",
" print(\"\\t\", item)\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "4b3a1bcb-3450-4128-b941-952f145baf99",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"activity_type\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Hardware accelerator e.g. GPU is available in the environment, but no `device` argument is passed to the `Pipeline` object. Model will be on CPU.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" Label Score\n",
"0 beach vacation 0.376311\n",
"1 micro-adventure / weekend trip 0.350168\n",
"2 nature escape 0.133974\n",
"3 digital nomad trip 0.031636\n",
"4 cultural exploration 0.031271\n",
"5 yoga / wellness retreat 0.012846\n",
"6 festival trip 0.012700\n",
"7 long-distance hike / thru-hike 0.009527\n",
"8 hut trek (summer) 0.008148\n",
"9 city trip 0.007793\n",
"10 road trip (car/camper) 0.006512\n",
"11 ski tour / skitour 0.005670\n",
"12 camping trip (campground) 0.004448\n",
"13 snowboard / splitboard trip 0.004113\n",
"14 camping trip (wild camping) 0.002714\n",
"15 hut trek (winter) 0.002170\n"
]
}
],
"source": [
"model_name = \"facebook/bart-large-mnli\"\n",
"trip_descr = \"I am planning a trip to Greece with my boyfriend, where we will visit two islands. We have booked an apartment on each island for a few days and plan to spend most of our time relaxing. Our main goals are to enjoy the beach, try delicious local food, and possibly go on a hike—if it’s not too hot. We will be relying solely on public transport. We’re in our late 20s and traveling from the Netherlands.\"\n",
"classifier = pipeline(\"zero-shot-classification\", model = model_name)\n",
"result = classifier(trip_descr, candidate_labels[\"activity_type\"])\n",
"\n",
"df = pd.DataFrame({\n",
" \"Label\": result[\"labels\"],\n",
" \"Score\": result[\"scores\"]\n",
"})\n",
"print(df)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "04208f9e-59bb-408b-92c6-941d064bf43d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"beach vacation\n"
]
}
],
"source": [
"# the labels are sorted by score. We choose the first one as our best guess for a class label\n",
"class_label = result[\"labels\"][0]\n",
"print(class_label)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "9f5f1c45-b411-4de1-a0a6-a7ecde5d8eae",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Label Score\n",
"0 going to the beach 0.991486\n",
"1 relaxing 0.977136\n",
"2 hiking 0.942628\n",
"3 swimming 0.219020\n",
"4 sightseeing 0.175862\n",
"5 running 0.098545\n",
"6 hut-to-hut hiking 0.083704\n",
"7 biking 0.036792\n",
"8 photography 0.036690\n",
"9 surfing 0.030993\n",
"10 stand-up paddleboarding (SUP) 0.025300\n",
"11 snorkeling 0.021451\n",
"12 yoga 0.011070\n",
"13 kayaking / canoeing 0.007511\n",
"14 rock climbing 0.006307\n",
"15 fishing 0.003497\n",
"16 paragliding 0.002656\n",
"17 rafting 0.001970\n",
"18 horseback riding 0.001560\n",
"19 snowshoe hiking 0.001528\n",
"20 cross-country skiing 0.001502\n",
"21 ice climbing 0.001434\n",
"22 skiing 0.001169\n",
"23 scuba diving 0.000789\n",
"24 ski touring 0.000491\n",
"['going to the beach', 'relaxing', 'hiking']\n"
]
}
],
"source": [
"# we do this for each superclass and receive a list of class labels for our trip. We did do things differently for activities\n",
"cut_off = 0.5\n",
"result_activ = classifier(trip_descr, candidate_labels[\"activities\"], multi_label=True)\n",
"classes = df.loc[df[\"Score\"] > 0.5, \"Label\"].tolist()\n",
"\n",
"df = pd.DataFrame({\n",
" \"Label\": result_activ[\"labels\"],\n",
" \"Score\": result_activ[\"scores\"]\n",
"})\n",
"print(df)\n",
"print(classes)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "3a7287c2-78f0-4a53-af72-1bc0f62da36f",
"metadata": {},
"outputs": [],
"source": [
"# doing this for all superclasses, depending on local machine this might take a while\n",
"def pred_trip(model_name, trip_descr, cut_off = 0.5):\n",
" \"\"\"\n",
" Classifies trip\n",
" \n",
" Parameters:\n",
" model_name: name of hugging-face model\n",
" trip_descr: text describing the trip\n",
" cut_off: cut_off for choosing activities\n",
"\n",
" Returns:\n",
" pd Dataframe: with class predictions and true values\n",
" \"\"\"\n",
" \n",
" classifier = pipeline(\"zero-shot-classification\", model=model_name)\n",
" df = pd.DataFrame(columns=['superclass', 'pred_class'])\n",
" for i, key in enumerate(keys_list):\n",
" # print(f\"\\rProcessing {i + 1}/{len(keys_list)}\", end=\"\", flush=True)\n",
" if key == 'activities':\n",
" result = classifier(trip_descr, candidate_labels[key], multi_label=True)\n",
" indices = [i for i, score in enumerate(result['scores']) if score > cut_off]\n",
" classes = [result['labels'][i] for i in indices]\n",
" else:\n",
" result = classifier(trip_descr, candidate_labels[key])\n",
" classes = result[\"labels\"][0]\n",
" df.loc[i] = [key, classes]\n",
" return df"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "43481d4c-039a-4a37-bd6d-dfe638bf9732",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Hardware accelerator e.g. GPU is available in the environment, but no `device` argument is passed to the `Pipeline` object. Model will be on CPU.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" superclass pred_class\n",
"0 activity_type beach vacation\n",
"1 activities [going to the beach, relaxing, hiking]\n",
"2 climate_or_season warm destination / summer\n",
"3 style_or_comfort minimalist\n",
"4 dress_code casual\n",
"5 accommodation huts with half board\n",
"6 transportation no own vehicle\n",
"7 special_conditions off-grid / no electricity\n",
"8 trip_length_days 7+ days\n"
]
}
],
"source": [
"result = pred_trip(model_name, trip_descr, cut_off = 0.5)\n",
"print(result)"
]
},
{
"cell_type": "markdown",
"id": "c4799d6b-6ab5-42da-a992-afe3666d0015",
"metadata": {},
"source": [
"Now use gradio app"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "35e14ac8-4445-4586-a115-081cf1ef2686",
"metadata": {},
"outputs": [],
"source": [
"# Prerequisites\n",
"from transformers import pipeline\n",
"import json\n",
"import pandas as pd\n",
"import gradio as gr"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "8eefd4cc-c375-4cc0-956b-472b36bafdb7",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"demo = gr.Interface(\n",
" fn=pred_trip,\n",
" inputs=[\n",
" gr.Textbox(label=\"Model name\", value = \"MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli\"),\n",
" gr.Textbox(label=\"Trip description\"),\n",
" gr.Number(label=\"Activity cut-off\", value = 0.5),\n",
" ],\n",
" # outputs=\"dataframe\",\n",
" outputs=[gr.Dataframe(label=\"DataFrame\")],\n",
" title=\"Trip classification\",\n",
" description=\"Enter a text describing your trip\",\n",
")\n",
"\n",
"# Launch the Gradio app\n",
"if __name__ == \"__main__\":\n",
" demo.launch()\n"
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "11006b67-bfd5-42a7-99c4-36c3db3affac",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Hardware accelerator e.g. GPU is available in the environment, but no `device` argument is passed to the `Pipeline` object. Model will be on CPU.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 9/9"
]
}
],
"source": [
"test = pred_trip(model_name, trip_descr, cut_off = 0.5)"
]
},
{
"cell_type": "markdown",
"id": "39920553-27d3-4a63-8381-8310566c4874",
"metadata": {},
"source": [
"All code for gradio app file"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "4ffc76d5-60c3-4bc8-bd4f-a9636077f01d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7861\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7861/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Hardware accelerator e.g. GPU is available in the environment, but no `device` argument is passed to the `Pipeline` object. Model will be on CPU.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 9/9"
]
}
],
"source": [
"# Prerequisites\n",
"from transformers import pipeline\n",
"import json\n",
"import pandas as pd\n",
"import gradio as gr\n",
"\n",
"# Get candidate labels\n",
"with open(\"packing_label_structure.json\", \"r\") as file:\n",
" candidate_labels = json.load(file)\n",
"keys_list = list(candidate_labels.keys())\n",
"\n",
"def pred_trip(model_name, trip_descr, cut_off = 0.5):\n",
" \"\"\"\n",
" Classifies trip\n",
" \n",
" Parameters:\n",
" model_name: name of hugging-face model\n",
" trip_descr: text describing the trip\n",
" cut_off: cut_off for choosing activities\n",
"\n",
" Returns:\n",
" pd Dataframe: with class predictions and true values\n",
" \"\"\"\n",
" \n",
" classifier = pipeline(\"zero-shot-classification\", model=model_name)\n",
" df = pd.DataFrame(columns=['superclass', 'pred_class'])\n",
" for i, key in enumerate(keys_list):\n",
" print(f\"\\rProcessing {i + 1}/{len(keys_list)}\", end=\"\", flush=True)\n",
" if key == 'activities':\n",
" result = classifier(trip_descr, candidate_labels[key], multi_label=True)\n",
" indices = [i for i, score in enumerate(result['scores']) if score > cut_off]\n",
" classes = [result['labels'][i] for i in indices]\n",
" else:\n",
" result = classifier(trip_descr, candidate_labels[key])\n",
" classes = result[\"labels\"][0]\n",
" df.loc[i] = [key, classes]\n",
" return df\n",
"\n",
"demo = gr.Interface(\n",
" fn=pred_trip,\n",
" inputs=[\n",
" gr.Textbox(label=\"Model name\", value = \"MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli\"),\n",
" gr.Textbox(label=\"Trip description\"),\n",
" gr.Number(label=\"Activity cut-off\", value = 0.5),\n",
" ],\n",
" # outputs=\"dataframe\",\n",
" outputs=[gr.Dataframe(label=\"DataFrame\")],\n",
" title=\"Trip classification\",\n",
" description=\"Enter a text describing your trip\",\n",
")\n",
"\n",
"# Launch the Gradio app\n",
"if __name__ == \"__main__\":\n",
" demo.launch()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fb115832-d9c9-4cfd-8a2a-85916ce3a04a",
"metadata": {},
"outputs": [],
"source": [
"Print test data set"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f25e1462-ca48-4853-ae44-dfc096c5011d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 . I am planning a trip to Greece with my boyfriend, where we will visit two islands. We have booked an apartment on each island for a few days and plan to spend most of our time relaxing. Our main goals are to enjoy the beach, try delicious local food, and possibly go on a hike—if it’s not too hot. We will be relying solely on public transport. We’re in our late 20s and traveling from the Netherlands. \n",
"\n",
"beach vacation\n",
"['swimming', 'going to the beach', 'relaxing', 'hiking']\n",
"warm destination / summer\n",
"lightweight (but comfortable)\n",
"casual\n",
"indoor\n",
"no own vehicle\n",
"no special conditions to consider\n",
"7+ days\n",
"\n",
"\n",
"1 . We are a couple in our thirties traveling to Vienna for a three-day city trip. We’ll be staying at a friend’s house and plan to explore the city by sightseeing, strolling through the streets, visiting markets, and trying out great restaurants and cafés. We also hope to attend a classical music concert. Our journey to Vienna will be by train. \n",
"\n",
"city trip\n",
"['sightseeing']\n",
"variable weather / spring / autumn\n",
"luxury (including evening wear)\n",
"casual\n",
"indoor\n",
"no own vehicle\n",
"no special conditions to consider\n",
"3 days\n",
"\n",
"\n",
"2 . My partner and I are traveling to the Netherlands and Germany to spend Christmas with our family. We are in our late twenties and will start our journey with a two-hour flight to the Netherlands. From there, we will take a 5.5-hour train ride to northern Germany. \n",
"\n",
"city trip\n",
"['relaxing']\n",
"cold destination / winter\n",
"lightweight (but comfortable)\n",
"casual\n",
"indoor\n",
"no own vehicle\n",
"no special conditions to consider\n",
"7+ days\n",
"\n",
"\n",
"3 . I’m in my twenties and will be traveling to Peru for three weeks. I’m going solo but will meet up with a friend to explore the Sacred Valley and take part in a Machu Picchu tour. We plan to hike, go rafting, and explore the remnants of the ancient Inca Empire. We’re also excited to try Peruvian cuisine and immerse ourselves in the local culture. Depending on our plans, we might also visit the rainforest region, such as Tarapoto. I’ll be flying to Peru on a long-haul flight and will be traveling in August. \n",
"\n",
"cultural exploration\n",
"['sightseeing', 'hiking', 'rafting']\n",
"variable weather / spring / autumn\n",
"lightweight (but comfortable)\n",
"casual\n",
"indoor\n",
"no own vehicle\n",
"rainy climate\n",
"7+ days\n",
"\n",
"\n",
"4 . We’re planning a 10-day trip to Austria in the summer, combining hiking with relaxation by the lake. We love exploring scenic trails and enjoying the outdoors, but we also want to unwind and swim in the lake. It’s the perfect mix of adventure and relaxation. \n",
"\n",
"nature escape\n",
"['swimming', 'relaxing', 'hiking']\n",
"warm destination / summer\n",
"lightweight (but comfortable)\n",
"casual\n",
"indoor\n",
"no own vehicle\n",
"no special conditions to consider\n",
"7+ days\n",
"\n",
"\n",
"5 . I am going on a multiple day hike and passing though mountains and the beach in Croatia. I like to pack light and will stay in refugios/huts with half board and travel to the start of the hike by car. It will be 6-7 days. \n",
"\n",
"long-distance hike / thru-hike\n",
"['going to the beach']\n",
"tropical / humid\n",
"minimalist\n",
"casual\n",
"huts with half board\n",
"own vehicle\n",
"off-grid / no electricity\n",
"6 days\n",
"\n",
"\n",
"6 . I will go with a friend on a beach holiday and we will do stand-up paddling, and surfing in the North of Spain. The destination is windy and can get cold, but is generally sunny. We will go by car and bring a tent to sleep in. It will be two weeks. \n",
"\n",
"beach vacation\n",
"['stand-up paddleboarding (SUP)', 'surfing']\n",
"cold destination / winter\n",
"ultralight\n",
"casual\n",
"sleeping in a tent\n",
"own vehicle\n",
"off-grid / no electricity\n",
"6 days\n",
"\n",
"\n",
"7 . We will go to Sweden in the winter, to go for a yoga and sauna/wellness retreat. I prefer lightweight packing and also want clothes to go for fancy dinners and maybe on a winter hike. We stay in hotels. \n",
"\n",
"yoga / wellness retreat\n",
"['hiking', 'yoga']\n",
"cold destination / winter\n",
"lightweight (but comfortable)\n",
"casual\n",
"indoor\n",
"no own vehicle\n",
"snow and ice\n",
"7 days\n",
"\n",
"\n",
"8 . I go on a skitouring trip where we also make videos/photos and the destination is Japan. Mainly sports clothes and isolation are needed (it is winter). We stay in a guesthouse. It will be 10 days. \n",
"\n",
"ski tour / skitour\n",
"['ski touring', 'photography']\n",
"cold destination / winter\n",
"minimalist\n",
"conservative\n",
"indoor\n",
"no own vehicle\n",
"avalanche-prone terrain\n",
"7+ days\n",
"\n",
"\n",
"9 . We plan a wild camping trip with activities such as snorkeling, kayaking and canoeing. It is a warm place and we want to bring little stuff. We stay in tents and hammocks and travel with a car, it will be 3 days. \n",
"\n",
"camping trip (wild camping)\n",
"['scuba diving', 'kayaking / canoeing']\n",
"tropical / humid\n",
"lightweight (but comfortable)\n",
"casual\n",
"sleeping in a tent\n",
"own vehicle\n",
"self-supported (bring your own cooking gear)\n",
"3 days\n",
"\n",
"\n"
]
}
],
"source": [
"# Load test data (list of dictionaries)\n",
"with open(\"test_data.json\", \"r\") as file:\n",
" packing_data = json.load(file)\n",
" # Extract trip descriptions and classification (trip_types)\n",
"trip_descriptions = [trip['description'] for trip in packing_data]\n",
"trip_types = [trip['trip_types'] for trip in packing_data]\n",
"\n",
"for i, item in enumerate(trip_descriptions):\n",
" print(i, \".\", item, \"\\n\")\n",
" for elem in trip_types[i]:\n",
" print(elem)\n",
" print(\"\\n\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "23a306bc-5dac-4569-a727-d140e1b8da7a",
"metadata": {},
"outputs": [],
"source": [
"# "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python (huggingface_env)",
"language": "python",
"name": "huggingface_env"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.20"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|