Spaces:
Build error
Build error
| import argparse | |
| import os.path as osp | |
| import warnings | |
| import numpy as np | |
| import onnx | |
| import onnxruntime as rt | |
| import torch | |
| from mmcv import DictAction | |
| from mmdet.core import (build_model_from_cfg, generate_inputs_and_wrap_model, | |
| preprocess_example_input) | |
| def pytorch2onnx(config_path, | |
| checkpoint_path, | |
| input_img, | |
| input_shape, | |
| opset_version=11, | |
| show=False, | |
| output_file='tmp.onnx', | |
| verify=False, | |
| normalize_cfg=None, | |
| dataset='coco', | |
| test_img=None, | |
| do_simplify=False, | |
| cfg_options=None): | |
| input_config = { | |
| 'input_shape': input_shape, | |
| 'input_path': input_img, | |
| 'normalize_cfg': normalize_cfg | |
| } | |
| # prepare original model and meta for verifying the onnx model | |
| orig_model = build_model_from_cfg( | |
| config_path, checkpoint_path, cfg_options=cfg_options) | |
| one_img, one_meta = preprocess_example_input(input_config) | |
| model, tensor_data = generate_inputs_and_wrap_model( | |
| config_path, checkpoint_path, input_config, cfg_options=cfg_options) | |
| output_names = ['boxes'] | |
| if model.with_bbox: | |
| output_names.append('labels') | |
| if model.with_mask: | |
| output_names.append('masks') | |
| torch.onnx.export( | |
| model, | |
| tensor_data, | |
| output_file, | |
| input_names=['input'], | |
| output_names=output_names, | |
| export_params=True, | |
| keep_initializers_as_inputs=True, | |
| do_constant_folding=True, | |
| verbose=show, | |
| opset_version=opset_version) | |
| model.forward = orig_model.forward | |
| # simplify onnx model | |
| if do_simplify: | |
| from mmdet import digit_version | |
| import mmcv | |
| min_required_version = '1.2.5' | |
| assert digit_version(mmcv.__version__) >= digit_version( | |
| min_required_version | |
| ), f'Requires to install mmcv>={min_required_version}' | |
| from mmcv.onnx.simplify import simplify | |
| input_dic = {'input': one_img.detach().cpu().numpy()} | |
| _ = simplify(output_file, [input_dic], output_file) | |
| print(f'Successfully exported ONNX model: {output_file}') | |
| if verify: | |
| from mmdet.core import get_classes, bbox2result | |
| from mmdet.apis import show_result_pyplot | |
| ort_custom_op_path = '' | |
| try: | |
| from mmcv.ops import get_onnxruntime_op_path | |
| ort_custom_op_path = get_onnxruntime_op_path() | |
| except (ImportError, ModuleNotFoundError): | |
| warnings.warn('If input model has custom op from mmcv, \ | |
| you may have to build mmcv with ONNXRuntime from source.') | |
| model.CLASSES = get_classes(dataset) | |
| num_classes = len(model.CLASSES) | |
| # check by onnx | |
| onnx_model = onnx.load(output_file) | |
| onnx.checker.check_model(onnx_model) | |
| if test_img is not None: | |
| input_config['input_path'] = test_img | |
| one_img, one_meta = preprocess_example_input(input_config) | |
| tensor_data = [one_img] | |
| # check the numerical value | |
| # get pytorch output | |
| pytorch_results = model(tensor_data, [[one_meta]], return_loss=False) | |
| pytorch_results = pytorch_results[0] | |
| # get onnx output | |
| input_all = [node.name for node in onnx_model.graph.input] | |
| input_initializer = [ | |
| node.name for node in onnx_model.graph.initializer | |
| ] | |
| net_feed_input = list(set(input_all) - set(input_initializer)) | |
| assert (len(net_feed_input) == 1) | |
| session_options = rt.SessionOptions() | |
| # register custom op for onnxruntime | |
| if osp.exists(ort_custom_op_path): | |
| session_options.register_custom_ops_library(ort_custom_op_path) | |
| sess = rt.InferenceSession(output_file, session_options) | |
| onnx_outputs = sess.run(None, | |
| {net_feed_input[0]: one_img.detach().numpy()}) | |
| output_names = [_.name for _ in sess.get_outputs()] | |
| output_shapes = [_.shape for _ in onnx_outputs] | |
| print(f'onnxruntime output names: {output_names}, \ | |
| output shapes: {output_shapes}') | |
| nrof_out = len(onnx_outputs) | |
| assert nrof_out > 0, 'Must have output' | |
| with_mask = nrof_out == 3 | |
| if nrof_out == 1: | |
| onnx_results = onnx_outputs[0] | |
| else: | |
| det_bboxes, det_labels = onnx_outputs[:2] | |
| onnx_results = bbox2result(det_bboxes, det_labels, num_classes) | |
| if with_mask: | |
| segm_results = onnx_outputs[2].squeeze(1) | |
| cls_segms = [[] for _ in range(num_classes)] | |
| for i in range(det_bboxes.shape[0]): | |
| cls_segms[det_labels[i]].append(segm_results[i]) | |
| onnx_results = (onnx_results, cls_segms) | |
| # visualize predictions | |
| if show: | |
| show_result_pyplot( | |
| model, one_meta['show_img'], pytorch_results, title='Pytorch') | |
| show_result_pyplot( | |
| model, one_meta['show_img'], onnx_results, title='ONNX') | |
| # compare a part of result | |
| if with_mask: | |
| compare_pairs = list(zip(onnx_results, pytorch_results)) | |
| else: | |
| compare_pairs = [(onnx_results, pytorch_results)] | |
| for onnx_res, pytorch_res in compare_pairs: | |
| for o_res, p_res in zip(onnx_res, pytorch_res): | |
| np.testing.assert_allclose( | |
| o_res, | |
| p_res, | |
| rtol=1e-03, | |
| atol=1e-05, | |
| ) | |
| print('The numerical values are the same between Pytorch and ONNX') | |
| def parse_args(): | |
| parser = argparse.ArgumentParser( | |
| description='Convert MMDetection models to ONNX') | |
| parser.add_argument('config', help='test config file path') | |
| parser.add_argument('checkpoint', help='checkpoint file') | |
| parser.add_argument('--input-img', type=str, help='Images for input') | |
| parser.add_argument('--show', action='store_true', help='show onnx graph') | |
| parser.add_argument('--output-file', type=str, default='tmp.onnx') | |
| parser.add_argument('--opset-version', type=int, default=11) | |
| parser.add_argument( | |
| '--test-img', type=str, default=None, help='Images for test') | |
| parser.add_argument( | |
| '--dataset', type=str, default='coco', help='Dataset name') | |
| parser.add_argument( | |
| '--verify', | |
| action='store_true', | |
| help='verify the onnx model output against pytorch output') | |
| parser.add_argument( | |
| '--simplify', | |
| action='store_true', | |
| help='Whether to simplify onnx model.') | |
| parser.add_argument( | |
| '--shape', | |
| type=int, | |
| nargs='+', | |
| default=[800, 1216], | |
| help='input image size') | |
| parser.add_argument( | |
| '--mean', | |
| type=float, | |
| nargs='+', | |
| default=[123.675, 116.28, 103.53], | |
| help='mean value used for preprocess input data') | |
| parser.add_argument( | |
| '--std', | |
| type=float, | |
| nargs='+', | |
| default=[58.395, 57.12, 57.375], | |
| help='variance value used for preprocess input data') | |
| parser.add_argument( | |
| '--cfg-options', | |
| nargs='+', | |
| action=DictAction, | |
| help='override some settings in the used config, the key-value pair ' | |
| 'in xxx=yyy format will be merged into config file. If the value to ' | |
| 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
| 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
| 'Note that the quotation marks are necessary and that no white space ' | |
| 'is allowed.') | |
| args = parser.parse_args() | |
| return args | |
| if __name__ == '__main__': | |
| args = parse_args() | |
| assert args.opset_version == 11, 'MMDet only support opset 11 now' | |
| if not args.input_img: | |
| args.input_img = osp.join( | |
| osp.dirname(__file__), '../../tests/data/color.jpg') | |
| if len(args.shape) == 1: | |
| input_shape = (1, 3, args.shape[0], args.shape[0]) | |
| elif len(args.shape) == 2: | |
| input_shape = (1, 3) + tuple(args.shape) | |
| else: | |
| raise ValueError('invalid input shape') | |
| assert len(args.mean) == 3 | |
| assert len(args.std) == 3 | |
| normalize_cfg = {'mean': args.mean, 'std': args.std} | |
| # convert model to onnx file | |
| pytorch2onnx( | |
| args.config, | |
| args.checkpoint, | |
| args.input_img, | |
| input_shape, | |
| opset_version=args.opset_version, | |
| show=args.show, | |
| output_file=args.output_file, | |
| verify=args.verify, | |
| normalize_cfg=normalize_cfg, | |
| dataset=args.dataset, | |
| test_img=args.test_img, | |
| do_simplify=args.simplify, | |
| cfg_options=args.cfg_options) | |