Spaces:
Build error
Build error
| import copy | |
| import cv2 | |
| import mmcv | |
| import numpy as np | |
| from ..builder import PIPELINES | |
| from .compose import Compose | |
| _MAX_LEVEL = 10 | |
| def level_to_value(level, max_value): | |
| """Map from level to values based on max_value.""" | |
| return (level / _MAX_LEVEL) * max_value | |
| def enhance_level_to_value(level, a=1.8, b=0.1): | |
| """Map from level to values.""" | |
| return (level / _MAX_LEVEL) * a + b | |
| def random_negative(value, random_negative_prob): | |
| """Randomly negate value based on random_negative_prob.""" | |
| return -value if np.random.rand() < random_negative_prob else value | |
| def bbox2fields(): | |
| """The key correspondence from bboxes to labels, masks and | |
| segmentations.""" | |
| bbox2label = { | |
| 'gt_bboxes': 'gt_labels', | |
| 'gt_bboxes_ignore': 'gt_labels_ignore' | |
| } | |
| bbox2mask = { | |
| 'gt_bboxes': 'gt_masks', | |
| 'gt_bboxes_ignore': 'gt_masks_ignore' | |
| } | |
| bbox2seg = { | |
| 'gt_bboxes': 'gt_semantic_seg', | |
| } | |
| return bbox2label, bbox2mask, bbox2seg | |
| class AutoAugment(object): | |
| """Auto augmentation. | |
| This data augmentation is proposed in `Learning Data Augmentation | |
| Strategies for Object Detection <https://arxiv.org/pdf/1906.11172>`_. | |
| TODO: Implement 'Shear', 'Sharpness' and 'Rotate' transforms | |
| Args: | |
| policies (list[list[dict]]): The policies of auto augmentation. Each | |
| policy in ``policies`` is a specific augmentation policy, and is | |
| composed by several augmentations (dict). When AutoAugment is | |
| called, a random policy in ``policies`` will be selected to | |
| augment images. | |
| Examples: | |
| >>> replace = (104, 116, 124) | |
| >>> policies = [ | |
| >>> [ | |
| >>> dict(type='Sharpness', prob=0.0, level=8), | |
| >>> dict( | |
| >>> type='Shear', | |
| >>> prob=0.4, | |
| >>> level=0, | |
| >>> replace=replace, | |
| >>> axis='x') | |
| >>> ], | |
| >>> [ | |
| >>> dict( | |
| >>> type='Rotate', | |
| >>> prob=0.6, | |
| >>> level=10, | |
| >>> replace=replace), | |
| >>> dict(type='Color', prob=1.0, level=6) | |
| >>> ] | |
| >>> ] | |
| >>> augmentation = AutoAugment(policies) | |
| >>> img = np.ones(100, 100, 3) | |
| >>> gt_bboxes = np.ones(10, 4) | |
| >>> results = dict(img=img, gt_bboxes=gt_bboxes) | |
| >>> results = augmentation(results) | |
| """ | |
| def __init__(self, policies): | |
| assert isinstance(policies, list) and len(policies) > 0, \ | |
| 'Policies must be a non-empty list.' | |
| for policy in policies: | |
| assert isinstance(policy, list) and len(policy) > 0, \ | |
| 'Each policy in policies must be a non-empty list.' | |
| for augment in policy: | |
| assert isinstance(augment, dict) and 'type' in augment, \ | |
| 'Each specific augmentation must be a dict with key' \ | |
| ' "type".' | |
| self.policies = copy.deepcopy(policies) | |
| self.transforms = [Compose(policy) for policy in self.policies] | |
| def __call__(self, results): | |
| transform = np.random.choice(self.transforms) | |
| return transform(results) | |
| def __repr__(self): | |
| return f'{self.__class__.__name__}(policies={self.policies})' | |
| class Shear(object): | |
| """Apply Shear Transformation to image (and its corresponding bbox, mask, | |
| segmentation). | |
| Args: | |
| level (int | float): The level should be in range [0,_MAX_LEVEL]. | |
| img_fill_val (int | float | tuple): The filled values for image border. | |
| If float, the same fill value will be used for all the three | |
| channels of image. If tuple, the should be 3 elements. | |
| seg_ignore_label (int): The fill value used for segmentation map. | |
| Note this value must equals ``ignore_label`` in ``semantic_head`` | |
| of the corresponding config. Default 255. | |
| prob (float): The probability for performing Shear and should be in | |
| range [0, 1]. | |
| direction (str): The direction for shear, either "horizontal" | |
| or "vertical". | |
| max_shear_magnitude (float): The maximum magnitude for Shear | |
| transformation. | |
| random_negative_prob (float): The probability that turns the | |
| offset negative. Should be in range [0,1] | |
| interpolation (str): Same as in :func:`mmcv.imshear`. | |
| """ | |
| def __init__(self, | |
| level, | |
| img_fill_val=128, | |
| seg_ignore_label=255, | |
| prob=0.5, | |
| direction='horizontal', | |
| max_shear_magnitude=0.3, | |
| random_negative_prob=0.5, | |
| interpolation='bilinear'): | |
| assert isinstance(level, (int, float)), 'The level must be type ' \ | |
| f'int or float, got {type(level)}.' | |
| assert 0 <= level <= _MAX_LEVEL, 'The level should be in range ' \ | |
| f'[0,{_MAX_LEVEL}], got {level}.' | |
| if isinstance(img_fill_val, (float, int)): | |
| img_fill_val = tuple([float(img_fill_val)] * 3) | |
| elif isinstance(img_fill_val, tuple): | |
| assert len(img_fill_val) == 3, 'img_fill_val as tuple must ' \ | |
| f'have 3 elements. got {len(img_fill_val)}.' | |
| img_fill_val = tuple([float(val) for val in img_fill_val]) | |
| else: | |
| raise ValueError( | |
| 'img_fill_val must be float or tuple with 3 elements.') | |
| assert np.all([0 <= val <= 255 for val in img_fill_val]), 'all ' \ | |
| 'elements of img_fill_val should between range [0,255].' \ | |
| f'got {img_fill_val}.' | |
| assert 0 <= prob <= 1.0, 'The probability of shear should be in ' \ | |
| f'range [0,1]. got {prob}.' | |
| assert direction in ('horizontal', 'vertical'), 'direction must ' \ | |
| f'in be either "horizontal" or "vertical". got {direction}.' | |
| assert isinstance(max_shear_magnitude, float), 'max_shear_magnitude ' \ | |
| f'should be type float. got {type(max_shear_magnitude)}.' | |
| assert 0. <= max_shear_magnitude <= 1., 'Defaultly ' \ | |
| 'max_shear_magnitude should be in range [0,1]. ' \ | |
| f'got {max_shear_magnitude}.' | |
| self.level = level | |
| self.magnitude = level_to_value(level, max_shear_magnitude) | |
| self.img_fill_val = img_fill_val | |
| self.seg_ignore_label = seg_ignore_label | |
| self.prob = prob | |
| self.direction = direction | |
| self.max_shear_magnitude = max_shear_magnitude | |
| self.random_negative_prob = random_negative_prob | |
| self.interpolation = interpolation | |
| def _shear_img(self, | |
| results, | |
| magnitude, | |
| direction='horizontal', | |
| interpolation='bilinear'): | |
| """Shear the image. | |
| Args: | |
| results (dict): Result dict from loading pipeline. | |
| magnitude (int | float): The magnitude used for shear. | |
| direction (str): The direction for shear, either "horizontal" | |
| or "vertical". | |
| interpolation (str): Same as in :func:`mmcv.imshear`. | |
| """ | |
| for key in results.get('img_fields', ['img']): | |
| img = results[key] | |
| img_sheared = mmcv.imshear( | |
| img, | |
| magnitude, | |
| direction, | |
| border_value=self.img_fill_val, | |
| interpolation=interpolation) | |
| results[key] = img_sheared.astype(img.dtype) | |
| def _shear_bboxes(self, results, magnitude): | |
| """Shear the bboxes.""" | |
| h, w, c = results['img_shape'] | |
| if self.direction == 'horizontal': | |
| shear_matrix = np.stack([[1, magnitude], | |
| [0, 1]]).astype(np.float32) # [2, 2] | |
| else: | |
| shear_matrix = np.stack([[1, 0], [magnitude, | |
| 1]]).astype(np.float32) | |
| for key in results.get('bbox_fields', []): | |
| min_x, min_y, max_x, max_y = np.split( | |
| results[key], results[key].shape[-1], axis=-1) | |
| coordinates = np.stack([[min_x, min_y], [max_x, min_y], | |
| [min_x, max_y], | |
| [max_x, max_y]]) # [4, 2, nb_box, 1] | |
| coordinates = coordinates[..., 0].transpose( | |
| (2, 1, 0)).astype(np.float32) # [nb_box, 2, 4] | |
| new_coords = np.matmul(shear_matrix[None, :, :], | |
| coordinates) # [nb_box, 2, 4] | |
| min_x = np.min(new_coords[:, 0, :], axis=-1) | |
| min_y = np.min(new_coords[:, 1, :], axis=-1) | |
| max_x = np.max(new_coords[:, 0, :], axis=-1) | |
| max_y = np.max(new_coords[:, 1, :], axis=-1) | |
| min_x = np.clip(min_x, a_min=0, a_max=w) | |
| min_y = np.clip(min_y, a_min=0, a_max=h) | |
| max_x = np.clip(max_x, a_min=min_x, a_max=w) | |
| max_y = np.clip(max_y, a_min=min_y, a_max=h) | |
| results[key] = np.stack([min_x, min_y, max_x, max_y], | |
| axis=-1).astype(results[key].dtype) | |
| def _shear_masks(self, | |
| results, | |
| magnitude, | |
| direction='horizontal', | |
| fill_val=0, | |
| interpolation='bilinear'): | |
| """Shear the masks.""" | |
| h, w, c = results['img_shape'] | |
| for key in results.get('mask_fields', []): | |
| masks = results[key] | |
| results[key] = masks.shear((h, w), | |
| magnitude, | |
| direction, | |
| border_value=fill_val, | |
| interpolation=interpolation) | |
| def _shear_seg(self, | |
| results, | |
| magnitude, | |
| direction='horizontal', | |
| fill_val=255, | |
| interpolation='bilinear'): | |
| """Shear the segmentation maps.""" | |
| for key in results.get('seg_fields', []): | |
| seg = results[key] | |
| results[key] = mmcv.imshear( | |
| seg, | |
| magnitude, | |
| direction, | |
| border_value=fill_val, | |
| interpolation=interpolation).astype(seg.dtype) | |
| def _filter_invalid(self, results, min_bbox_size=0): | |
| """Filter bboxes and corresponding masks too small after shear | |
| augmentation.""" | |
| bbox2label, bbox2mask, _ = bbox2fields() | |
| for key in results.get('bbox_fields', []): | |
| bbox_w = results[key][:, 2] - results[key][:, 0] | |
| bbox_h = results[key][:, 3] - results[key][:, 1] | |
| valid_inds = (bbox_w > min_bbox_size) & (bbox_h > min_bbox_size) | |
| valid_inds = np.nonzero(valid_inds)[0] | |
| results[key] = results[key][valid_inds] | |
| # label fields. e.g. gt_labels and gt_labels_ignore | |
| label_key = bbox2label.get(key) | |
| if label_key in results: | |
| results[label_key] = results[label_key][valid_inds] | |
| # mask fields, e.g. gt_masks and gt_masks_ignore | |
| mask_key = bbox2mask.get(key) | |
| if mask_key in results: | |
| results[mask_key] = results[mask_key][valid_inds] | |
| def __call__(self, results): | |
| """Call function to shear images, bounding boxes, masks and semantic | |
| segmentation maps. | |
| Args: | |
| results (dict): Result dict from loading pipeline. | |
| Returns: | |
| dict: Sheared results. | |
| """ | |
| if np.random.rand() > self.prob: | |
| return results | |
| magnitude = random_negative(self.magnitude, self.random_negative_prob) | |
| self._shear_img(results, magnitude, self.direction, self.interpolation) | |
| self._shear_bboxes(results, magnitude) | |
| # fill_val set to 0 for background of mask. | |
| self._shear_masks( | |
| results, | |
| magnitude, | |
| self.direction, | |
| fill_val=0, | |
| interpolation=self.interpolation) | |
| self._shear_seg( | |
| results, | |
| magnitude, | |
| self.direction, | |
| fill_val=self.seg_ignore_label, | |
| interpolation=self.interpolation) | |
| self._filter_invalid(results) | |
| return results | |
| def __repr__(self): | |
| repr_str = self.__class__.__name__ | |
| repr_str += f'(level={self.level}, ' | |
| repr_str += f'img_fill_val={self.img_fill_val}, ' | |
| repr_str += f'seg_ignore_label={self.seg_ignore_label}, ' | |
| repr_str += f'prob={self.prob}, ' | |
| repr_str += f'direction={self.direction}, ' | |
| repr_str += f'max_shear_magnitude={self.max_shear_magnitude}, ' | |
| repr_str += f'random_negative_prob={self.random_negative_prob}, ' | |
| repr_str += f'interpolation={self.interpolation})' | |
| return repr_str | |
| class Rotate(object): | |
| """Apply Rotate Transformation to image (and its corresponding bbox, mask, | |
| segmentation). | |
| Args: | |
| level (int | float): The level should be in range (0,_MAX_LEVEL]. | |
| scale (int | float): Isotropic scale factor. Same in | |
| ``mmcv.imrotate``. | |
| center (int | float | tuple[float]): Center point (w, h) of the | |
| rotation in the source image. If None, the center of the | |
| image will be used. Same in ``mmcv.imrotate``. | |
| img_fill_val (int | float | tuple): The fill value for image border. | |
| If float, the same value will be used for all the three | |
| channels of image. If tuple, the should be 3 elements (e.g. | |
| equals the number of channels for image). | |
| seg_ignore_label (int): The fill value used for segmentation map. | |
| Note this value must equals ``ignore_label`` in ``semantic_head`` | |
| of the corresponding config. Default 255. | |
| prob (float): The probability for perform transformation and | |
| should be in range 0 to 1. | |
| max_rotate_angle (int | float): The maximum angles for rotate | |
| transformation. | |
| random_negative_prob (float): The probability that turns the | |
| offset negative. | |
| """ | |
| def __init__(self, | |
| level, | |
| scale=1, | |
| center=None, | |
| img_fill_val=128, | |
| seg_ignore_label=255, | |
| prob=0.5, | |
| max_rotate_angle=30, | |
| random_negative_prob=0.5): | |
| assert isinstance(level, (int, float)), \ | |
| f'The level must be type int or float. got {type(level)}.' | |
| assert 0 <= level <= _MAX_LEVEL, \ | |
| f'The level should be in range (0,{_MAX_LEVEL}]. got {level}.' | |
| assert isinstance(scale, (int, float)), \ | |
| f'The scale must be type int or float. got type {type(scale)}.' | |
| if isinstance(center, (int, float)): | |
| center = (center, center) | |
| elif isinstance(center, tuple): | |
| assert len(center) == 2, 'center with type tuple must have '\ | |
| f'2 elements. got {len(center)} elements.' | |
| else: | |
| assert center is None, 'center must be None or type int, '\ | |
| f'float or tuple, got type {type(center)}.' | |
| if isinstance(img_fill_val, (float, int)): | |
| img_fill_val = tuple([float(img_fill_val)] * 3) | |
| elif isinstance(img_fill_val, tuple): | |
| assert len(img_fill_val) == 3, 'img_fill_val as tuple must '\ | |
| f'have 3 elements. got {len(img_fill_val)}.' | |
| img_fill_val = tuple([float(val) for val in img_fill_val]) | |
| else: | |
| raise ValueError( | |
| 'img_fill_val must be float or tuple with 3 elements.') | |
| assert np.all([0 <= val <= 255 for val in img_fill_val]), \ | |
| 'all elements of img_fill_val should between range [0,255]. '\ | |
| f'got {img_fill_val}.' | |
| assert 0 <= prob <= 1.0, 'The probability should be in range [0,1]. '\ | |
| 'got {prob}.' | |
| assert isinstance(max_rotate_angle, (int, float)), 'max_rotate_angle '\ | |
| f'should be type int or float. got type {type(max_rotate_angle)}.' | |
| self.level = level | |
| self.scale = scale | |
| # Rotation angle in degrees. Positive values mean | |
| # clockwise rotation. | |
| self.angle = level_to_value(level, max_rotate_angle) | |
| self.center = center | |
| self.img_fill_val = img_fill_val | |
| self.seg_ignore_label = seg_ignore_label | |
| self.prob = prob | |
| self.max_rotate_angle = max_rotate_angle | |
| self.random_negative_prob = random_negative_prob | |
| def _rotate_img(self, results, angle, center=None, scale=1.0): | |
| """Rotate the image. | |
| Args: | |
| results (dict): Result dict from loading pipeline. | |
| angle (float): Rotation angle in degrees, positive values | |
| mean clockwise rotation. Same in ``mmcv.imrotate``. | |
| center (tuple[float], optional): Center point (w, h) of the | |
| rotation. Same in ``mmcv.imrotate``. | |
| scale (int | float): Isotropic scale factor. Same in | |
| ``mmcv.imrotate``. | |
| """ | |
| for key in results.get('img_fields', ['img']): | |
| img = results[key].copy() | |
| img_rotated = mmcv.imrotate( | |
| img, angle, center, scale, border_value=self.img_fill_val) | |
| results[key] = img_rotated.astype(img.dtype) | |
| def _rotate_bboxes(self, results, rotate_matrix): | |
| """Rotate the bboxes.""" | |
| h, w, c = results['img_shape'] | |
| for key in results.get('bbox_fields', []): | |
| min_x, min_y, max_x, max_y = np.split( | |
| results[key], results[key].shape[-1], axis=-1) | |
| coordinates = np.stack([[min_x, min_y], [max_x, min_y], | |
| [min_x, max_y], | |
| [max_x, max_y]]) # [4, 2, nb_bbox, 1] | |
| # pad 1 to convert from format [x, y] to homogeneous | |
| # coordinates format [x, y, 1] | |
| coordinates = np.concatenate( | |
| (coordinates, | |
| np.ones((4, 1, coordinates.shape[2], 1), coordinates.dtype)), | |
| axis=1) # [4, 3, nb_bbox, 1] | |
| coordinates = coordinates.transpose( | |
| (2, 0, 1, 3)) # [nb_bbox, 4, 3, 1] | |
| rotated_coords = np.matmul(rotate_matrix, | |
| coordinates) # [nb_bbox, 4, 2, 1] | |
| rotated_coords = rotated_coords[..., 0] # [nb_bbox, 4, 2] | |
| min_x, min_y = np.min( | |
| rotated_coords[:, :, 0], axis=1), np.min( | |
| rotated_coords[:, :, 1], axis=1) | |
| max_x, max_y = np.max( | |
| rotated_coords[:, :, 0], axis=1), np.max( | |
| rotated_coords[:, :, 1], axis=1) | |
| min_x, min_y = np.clip( | |
| min_x, a_min=0, a_max=w), np.clip( | |
| min_y, a_min=0, a_max=h) | |
| max_x, max_y = np.clip( | |
| max_x, a_min=min_x, a_max=w), np.clip( | |
| max_y, a_min=min_y, a_max=h) | |
| results[key] = np.stack([min_x, min_y, max_x, max_y], | |
| axis=-1).astype(results[key].dtype) | |
| def _rotate_masks(self, | |
| results, | |
| angle, | |
| center=None, | |
| scale=1.0, | |
| fill_val=0): | |
| """Rotate the masks.""" | |
| h, w, c = results['img_shape'] | |
| for key in results.get('mask_fields', []): | |
| masks = results[key] | |
| results[key] = masks.rotate((h, w), angle, center, scale, fill_val) | |
| def _rotate_seg(self, | |
| results, | |
| angle, | |
| center=None, | |
| scale=1.0, | |
| fill_val=255): | |
| """Rotate the segmentation map.""" | |
| for key in results.get('seg_fields', []): | |
| seg = results[key].copy() | |
| results[key] = mmcv.imrotate( | |
| seg, angle, center, scale, | |
| border_value=fill_val).astype(seg.dtype) | |
| def _filter_invalid(self, results, min_bbox_size=0): | |
| """Filter bboxes and corresponding masks too small after rotate | |
| augmentation.""" | |
| bbox2label, bbox2mask, _ = bbox2fields() | |
| for key in results.get('bbox_fields', []): | |
| bbox_w = results[key][:, 2] - results[key][:, 0] | |
| bbox_h = results[key][:, 3] - results[key][:, 1] | |
| valid_inds = (bbox_w > min_bbox_size) & (bbox_h > min_bbox_size) | |
| valid_inds = np.nonzero(valid_inds)[0] | |
| results[key] = results[key][valid_inds] | |
| # label fields. e.g. gt_labels and gt_labels_ignore | |
| label_key = bbox2label.get(key) | |
| if label_key in results: | |
| results[label_key] = results[label_key][valid_inds] | |
| # mask fields, e.g. gt_masks and gt_masks_ignore | |
| mask_key = bbox2mask.get(key) | |
| if mask_key in results: | |
| results[mask_key] = results[mask_key][valid_inds] | |
| def __call__(self, results): | |
| """Call function to rotate images, bounding boxes, masks and semantic | |
| segmentation maps. | |
| Args: | |
| results (dict): Result dict from loading pipeline. | |
| Returns: | |
| dict: Rotated results. | |
| """ | |
| if np.random.rand() > self.prob: | |
| return results | |
| h, w = results['img'].shape[:2] | |
| center = self.center | |
| if center is None: | |
| center = ((w - 1) * 0.5, (h - 1) * 0.5) | |
| angle = random_negative(self.angle, self.random_negative_prob) | |
| self._rotate_img(results, angle, center, self.scale) | |
| rotate_matrix = cv2.getRotationMatrix2D(center, -angle, self.scale) | |
| self._rotate_bboxes(results, rotate_matrix) | |
| self._rotate_masks(results, angle, center, self.scale, fill_val=0) | |
| self._rotate_seg( | |
| results, angle, center, self.scale, fill_val=self.seg_ignore_label) | |
| self._filter_invalid(results) | |
| return results | |
| def __repr__(self): | |
| repr_str = self.__class__.__name__ | |
| repr_str += f'(level={self.level}, ' | |
| repr_str += f'scale={self.scale}, ' | |
| repr_str += f'center={self.center}, ' | |
| repr_str += f'img_fill_val={self.img_fill_val}, ' | |
| repr_str += f'seg_ignore_label={self.seg_ignore_label}, ' | |
| repr_str += f'prob={self.prob}, ' | |
| repr_str += f'max_rotate_angle={self.max_rotate_angle}, ' | |
| repr_str += f'random_negative_prob={self.random_negative_prob})' | |
| return repr_str | |
| class Translate(object): | |
| """Translate the images, bboxes, masks and segmentation maps horizontally | |
| or vertically. | |
| Args: | |
| level (int | float): The level for Translate and should be in | |
| range [0,_MAX_LEVEL]. | |
| prob (float): The probability for performing translation and | |
| should be in range [0, 1]. | |
| img_fill_val (int | float | tuple): The filled value for image | |
| border. If float, the same fill value will be used for all | |
| the three channels of image. If tuple, the should be 3 | |
| elements (e.g. equals the number of channels for image). | |
| seg_ignore_label (int): The fill value used for segmentation map. | |
| Note this value must equals ``ignore_label`` in ``semantic_head`` | |
| of the corresponding config. Default 255. | |
| direction (str): The translate direction, either "horizontal" | |
| or "vertical". | |
| max_translate_offset (int | float): The maximum pixel's offset for | |
| Translate. | |
| random_negative_prob (float): The probability that turns the | |
| offset negative. | |
| min_size (int | float): The minimum pixel for filtering | |
| invalid bboxes after the translation. | |
| """ | |
| def __init__(self, | |
| level, | |
| prob=0.5, | |
| img_fill_val=128, | |
| seg_ignore_label=255, | |
| direction='horizontal', | |
| max_translate_offset=250., | |
| random_negative_prob=0.5, | |
| min_size=0): | |
| assert isinstance(level, (int, float)), \ | |
| 'The level must be type int or float.' | |
| assert 0 <= level <= _MAX_LEVEL, \ | |
| 'The level used for calculating Translate\'s offset should be ' \ | |
| 'in range [0,_MAX_LEVEL]' | |
| assert 0 <= prob <= 1.0, \ | |
| 'The probability of translation should be in range [0, 1].' | |
| if isinstance(img_fill_val, (float, int)): | |
| img_fill_val = tuple([float(img_fill_val)] * 3) | |
| elif isinstance(img_fill_val, tuple): | |
| assert len(img_fill_val) == 3, \ | |
| 'img_fill_val as tuple must have 3 elements.' | |
| img_fill_val = tuple([float(val) for val in img_fill_val]) | |
| else: | |
| raise ValueError('img_fill_val must be type float or tuple.') | |
| assert np.all([0 <= val <= 255 for val in img_fill_val]), \ | |
| 'all elements of img_fill_val should between range [0,255].' | |
| assert direction in ('horizontal', 'vertical'), \ | |
| 'direction should be "horizontal" or "vertical".' | |
| assert isinstance(max_translate_offset, (int, float)), \ | |
| 'The max_translate_offset must be type int or float.' | |
| # the offset used for translation | |
| self.offset = int(level_to_value(level, max_translate_offset)) | |
| self.level = level | |
| self.prob = prob | |
| self.img_fill_val = img_fill_val | |
| self.seg_ignore_label = seg_ignore_label | |
| self.direction = direction | |
| self.max_translate_offset = max_translate_offset | |
| self.random_negative_prob = random_negative_prob | |
| self.min_size = min_size | |
| def _translate_img(self, results, offset, direction='horizontal'): | |
| """Translate the image. | |
| Args: | |
| results (dict): Result dict from loading pipeline. | |
| offset (int | float): The offset for translate. | |
| direction (str): The translate direction, either "horizontal" | |
| or "vertical". | |
| """ | |
| for key in results.get('img_fields', ['img']): | |
| img = results[key].copy() | |
| results[key] = mmcv.imtranslate( | |
| img, offset, direction, self.img_fill_val).astype(img.dtype) | |
| def _translate_bboxes(self, results, offset): | |
| """Shift bboxes horizontally or vertically, according to offset.""" | |
| h, w, c = results['img_shape'] | |
| for key in results.get('bbox_fields', []): | |
| min_x, min_y, max_x, max_y = np.split( | |
| results[key], results[key].shape[-1], axis=-1) | |
| if self.direction == 'horizontal': | |
| min_x = np.maximum(0, min_x + offset) | |
| max_x = np.minimum(w, max_x + offset) | |
| elif self.direction == 'vertical': | |
| min_y = np.maximum(0, min_y + offset) | |
| max_y = np.minimum(h, max_y + offset) | |
| # the boxes translated outside of image will be filtered along with | |
| # the corresponding masks, by invoking ``_filter_invalid``. | |
| results[key] = np.concatenate([min_x, min_y, max_x, max_y], | |
| axis=-1) | |
| def _translate_masks(self, | |
| results, | |
| offset, | |
| direction='horizontal', | |
| fill_val=0): | |
| """Translate masks horizontally or vertically.""" | |
| h, w, c = results['img_shape'] | |
| for key in results.get('mask_fields', []): | |
| masks = results[key] | |
| results[key] = masks.translate((h, w), offset, direction, fill_val) | |
| def _translate_seg(self, | |
| results, | |
| offset, | |
| direction='horizontal', | |
| fill_val=255): | |
| """Translate segmentation maps horizontally or vertically.""" | |
| for key in results.get('seg_fields', []): | |
| seg = results[key].copy() | |
| results[key] = mmcv.imtranslate(seg, offset, direction, | |
| fill_val).astype(seg.dtype) | |
| def _filter_invalid(self, results, min_size=0): | |
| """Filter bboxes and masks too small or translated out of image.""" | |
| bbox2label, bbox2mask, _ = bbox2fields() | |
| for key in results.get('bbox_fields', []): | |
| bbox_w = results[key][:, 2] - results[key][:, 0] | |
| bbox_h = results[key][:, 3] - results[key][:, 1] | |
| valid_inds = (bbox_w > min_size) & (bbox_h > min_size) | |
| valid_inds = np.nonzero(valid_inds)[0] | |
| results[key] = results[key][valid_inds] | |
| # label fields. e.g. gt_labels and gt_labels_ignore | |
| label_key = bbox2label.get(key) | |
| if label_key in results: | |
| results[label_key] = results[label_key][valid_inds] | |
| # mask fields, e.g. gt_masks and gt_masks_ignore | |
| mask_key = bbox2mask.get(key) | |
| if mask_key in results: | |
| results[mask_key] = results[mask_key][valid_inds] | |
| return results | |
| def __call__(self, results): | |
| """Call function to translate images, bounding boxes, masks and | |
| semantic segmentation maps. | |
| Args: | |
| results (dict): Result dict from loading pipeline. | |
| Returns: | |
| dict: Translated results. | |
| """ | |
| if np.random.rand() > self.prob: | |
| return results | |
| offset = random_negative(self.offset, self.random_negative_prob) | |
| self._translate_img(results, offset, self.direction) | |
| self._translate_bboxes(results, offset) | |
| # fill_val defaultly 0 for BitmapMasks and None for PolygonMasks. | |
| self._translate_masks(results, offset, self.direction) | |
| # fill_val set to ``seg_ignore_label`` for the ignored value | |
| # of segmentation map. | |
| self._translate_seg( | |
| results, offset, self.direction, fill_val=self.seg_ignore_label) | |
| self._filter_invalid(results, min_size=self.min_size) | |
| return results | |
| class ColorTransform(object): | |
| """Apply Color transformation to image. The bboxes, masks, and | |
| segmentations are not modified. | |
| Args: | |
| level (int | float): Should be in range [0,_MAX_LEVEL]. | |
| prob (float): The probability for performing Color transformation. | |
| """ | |
| def __init__(self, level, prob=0.5): | |
| assert isinstance(level, (int, float)), \ | |
| 'The level must be type int or float.' | |
| assert 0 <= level <= _MAX_LEVEL, \ | |
| 'The level should be in range [0,_MAX_LEVEL].' | |
| assert 0 <= prob <= 1.0, \ | |
| 'The probability should be in range [0,1].' | |
| self.level = level | |
| self.prob = prob | |
| self.factor = enhance_level_to_value(level) | |
| def _adjust_color_img(self, results, factor=1.0): | |
| """Apply Color transformation to image.""" | |
| for key in results.get('img_fields', ['img']): | |
| # NOTE defaultly the image should be BGR format | |
| img = results[key] | |
| results[key] = mmcv.adjust_color(img, factor).astype(img.dtype) | |
| def __call__(self, results): | |
| """Call function for Color transformation. | |
| Args: | |
| results (dict): Result dict from loading pipeline. | |
| Returns: | |
| dict: Colored results. | |
| """ | |
| if np.random.rand() > self.prob: | |
| return results | |
| self._adjust_color_img(results, self.factor) | |
| return results | |
| def __repr__(self): | |
| repr_str = self.__class__.__name__ | |
| repr_str += f'(level={self.level}, ' | |
| repr_str += f'prob={self.prob})' | |
| return repr_str | |
| class EqualizeTransform(object): | |
| """Apply Equalize transformation to image. The bboxes, masks and | |
| segmentations are not modified. | |
| Args: | |
| prob (float): The probability for performing Equalize transformation. | |
| """ | |
| def __init__(self, prob=0.5): | |
| assert 0 <= prob <= 1.0, \ | |
| 'The probability should be in range [0,1].' | |
| self.prob = prob | |
| def _imequalize(self, results): | |
| """Equalizes the histogram of one image.""" | |
| for key in results.get('img_fields', ['img']): | |
| img = results[key] | |
| results[key] = mmcv.imequalize(img).astype(img.dtype) | |
| def __call__(self, results): | |
| """Call function for Equalize transformation. | |
| Args: | |
| results (dict): Results dict from loading pipeline. | |
| Returns: | |
| dict: Results after the transformation. | |
| """ | |
| if np.random.rand() > self.prob: | |
| return results | |
| self._imequalize(results) | |
| return results | |
| def __repr__(self): | |
| repr_str = self.__class__.__name__ | |
| repr_str += f'(prob={self.prob})' | |
| class BrightnessTransform(object): | |
| """Apply Brightness transformation to image. The bboxes, masks and | |
| segmentations are not modified. | |
| Args: | |
| level (int | float): Should be in range [0,_MAX_LEVEL]. | |
| prob (float): The probability for performing Brightness transformation. | |
| """ | |
| def __init__(self, level, prob=0.5): | |
| assert isinstance(level, (int, float)), \ | |
| 'The level must be type int or float.' | |
| assert 0 <= level <= _MAX_LEVEL, \ | |
| 'The level should be in range [0,_MAX_LEVEL].' | |
| assert 0 <= prob <= 1.0, \ | |
| 'The probability should be in range [0,1].' | |
| self.level = level | |
| self.prob = prob | |
| self.factor = enhance_level_to_value(level) | |
| def _adjust_brightness_img(self, results, factor=1.0): | |
| """Adjust the brightness of image.""" | |
| for key in results.get('img_fields', ['img']): | |
| img = results[key] | |
| results[key] = mmcv.adjust_brightness(img, | |
| factor).astype(img.dtype) | |
| def __call__(self, results): | |
| """Call function for Brightness transformation. | |
| Args: | |
| results (dict): Results dict from loading pipeline. | |
| Returns: | |
| dict: Results after the transformation. | |
| """ | |
| if np.random.rand() > self.prob: | |
| return results | |
| self._adjust_brightness_img(results, self.factor) | |
| return results | |
| def __repr__(self): | |
| repr_str = self.__class__.__name__ | |
| repr_str += f'(level={self.level}, ' | |
| repr_str += f'prob={self.prob})' | |
| return repr_str | |
| class ContrastTransform(object): | |
| """Apply Contrast transformation to image. The bboxes, masks and | |
| segmentations are not modified. | |
| Args: | |
| level (int | float): Should be in range [0,_MAX_LEVEL]. | |
| prob (float): The probability for performing Contrast transformation. | |
| """ | |
| def __init__(self, level, prob=0.5): | |
| assert isinstance(level, (int, float)), \ | |
| 'The level must be type int or float.' | |
| assert 0 <= level <= _MAX_LEVEL, \ | |
| 'The level should be in range [0,_MAX_LEVEL].' | |
| assert 0 <= prob <= 1.0, \ | |
| 'The probability should be in range [0,1].' | |
| self.level = level | |
| self.prob = prob | |
| self.factor = enhance_level_to_value(level) | |
| def _adjust_contrast_img(self, results, factor=1.0): | |
| """Adjust the image contrast.""" | |
| for key in results.get('img_fields', ['img']): | |
| img = results[key] | |
| results[key] = mmcv.adjust_contrast(img, factor).astype(img.dtype) | |
| def __call__(self, results): | |
| """Call function for Contrast transformation. | |
| Args: | |
| results (dict): Results dict from loading pipeline. | |
| Returns: | |
| dict: Results after the transformation. | |
| """ | |
| if np.random.rand() > self.prob: | |
| return results | |
| self._adjust_contrast_img(results, self.factor) | |
| return results | |
| def __repr__(self): | |
| repr_str = self.__class__.__name__ | |
| repr_str += f'(level={self.level}, ' | |
| repr_str += f'prob={self.prob})' | |
| return repr_str | |