Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,22 +1,16 @@
|
|
| 1 |
-
|
| 2 |
-
Sentiment analysis pipeline for texts in multiple languages.
|
| 3 |
-
"""
|
| 4 |
-
|
| 5 |
import gc
|
| 6 |
from collections import defaultdict
|
| 7 |
-
import lingua
|
| 8 |
-
from transformers import pipeline
|
| 9 |
import torch
|
|
|
|
| 10 |
from lingua import Language, LanguageDetectorBuilder
|
| 11 |
|
| 12 |
-
|
| 13 |
__version__ = "0.1.0"
|
| 14 |
|
| 15 |
if torch.cuda.is_available():
|
| 16 |
-
device_tag = 0
|
| 17 |
else:
|
| 18 |
-
device_tag = -1
|
| 19 |
-
|
| 20 |
|
| 21 |
default_models = {
|
| 22 |
Language.ENGLISH: "lxyuan/distilbert-base-multilingual-cased-sentiments-student",
|
|
@@ -37,29 +31,19 @@ default_models = {
|
|
| 37 |
language_detector = LanguageDetectorBuilder.from_all_languages().build()
|
| 38 |
|
| 39 |
|
| 40 |
-
|
| 41 |
-
# Processing a batch:
|
| 42 |
-
# Detect languages into a list and map to models
|
| 43 |
-
# For each model, make a pipeline, make a list and process
|
| 44 |
-
# inject int a list in the original order
|
| 45 |
-
|
| 46 |
def split_message(message, max_length):
|
| 47 |
""" Split a message into a list of chunks of given maximum size. """
|
| 48 |
-
return [message[i: i+max_length] for i in range(0, len(message), max_length)]
|
| 49 |
|
| 50 |
|
| 51 |
-
def process_messages_in_batches(
|
| 52 |
-
messages_with_languages,
|
| 53 |
-
models = None,
|
| 54 |
-
max_length = 512
|
| 55 |
-
):
|
| 56 |
"""
|
| 57 |
Process messages in batches, creating only one pipeline at a time, and maintain the original order.
|
| 58 |
-
|
| 59 |
Params:
|
| 60 |
messages_with_languages: list of tuples, each containing a message and its detected language
|
| 61 |
models: dict, model paths indexed by Language
|
| 62 |
-
|
| 63 |
Returns:
|
| 64 |
OrderedDict: containing the index as keys and tuple of (message, sentiment result) as values
|
| 65 |
"""
|
|
@@ -81,7 +65,7 @@ def process_messages_in_batches(
|
|
| 81 |
messages_by_model[model_name].append((index, message))
|
| 82 |
else:
|
| 83 |
results[index] = {"label": "none", "score": 0}
|
| 84 |
-
|
| 85 |
# Process messages and maintain original order
|
| 86 |
for model_name, batch in messages_by_model.items():
|
| 87 |
sentiment_pipeline = pipeline(model=model_name, device=device_tag)
|
|
@@ -96,7 +80,7 @@ def process_messages_in_batches(
|
|
| 96 |
message_map[idx].append(len(chunks) - 1)
|
| 97 |
else:
|
| 98 |
message_map[idx] = [len(chunks) - 1]
|
| 99 |
-
|
| 100 |
chunk_sentiments = sentiment_pipeline(chunks)
|
| 101 |
|
| 102 |
for idx, chunk_indices in message_map.items():
|
|
@@ -115,7 +99,7 @@ def process_messages_in_batches(
|
|
| 115 |
# Force garbage collections to remove the model from memory
|
| 116 |
del sentiment_pipeline
|
| 117 |
gc.collect()
|
| 118 |
-
|
| 119 |
# Unify common spellings of the labels
|
| 120 |
for i in range(len(results)):
|
| 121 |
results[i]["label"] = results[i]["label"].lower()
|
|
@@ -134,11 +118,11 @@ def sentiment(messages, models=None):
|
|
| 134 |
the user can provide a model for a given language in the models
|
| 135 |
dictionary. The keys for this dictionary are lingua.Language objects
|
| 136 |
and items HuggingFace model paths.
|
| 137 |
-
|
| 138 |
Params:
|
| 139 |
messages: list of message strings
|
| 140 |
models: dict, huggingface model paths indexed by lingua.Language
|
| 141 |
-
|
| 142 |
Returns:
|
| 143 |
OrderedDict: containing the index as keys and tuple of (message, sentiment result) as values
|
| 144 |
"""
|
|
@@ -147,26 +131,24 @@ def sentiment(messages, models=None):
|
|
| 147 |
]
|
| 148 |
|
| 149 |
results = process_messages_in_batches(messages_with_languages, models)
|
| 150 |
-
return
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
"
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
]
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
print(f"Sentiment: {sentiment_label} (Score: {sentiment_score})")
|
| 172 |
-
print()
|
|
|
|
| 1 |
+
import streamlit as st
|
|
|
|
|
|
|
|
|
|
| 2 |
import gc
|
| 3 |
from collections import defaultdict
|
|
|
|
|
|
|
| 4 |
import torch
|
| 5 |
+
from transformers import pipeline
|
| 6 |
from lingua import Language, LanguageDetectorBuilder
|
| 7 |
|
|
|
|
| 8 |
__version__ = "0.1.0"
|
| 9 |
|
| 10 |
if torch.cuda.is_available():
|
| 11 |
+
device_tag = 0 # first gpu
|
| 12 |
else:
|
| 13 |
+
device_tag = -1 # cpu
|
|
|
|
| 14 |
|
| 15 |
default_models = {
|
| 16 |
Language.ENGLISH: "lxyuan/distilbert-base-multilingual-cased-sentiments-student",
|
|
|
|
| 31 |
language_detector = LanguageDetectorBuilder.from_all_languages().build()
|
| 32 |
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
def split_message(message, max_length):
|
| 35 |
""" Split a message into a list of chunks of given maximum size. """
|
| 36 |
+
return [message[i: i + max_length] for i in range(0, len(message), max_length)]
|
| 37 |
|
| 38 |
|
| 39 |
+
def process_messages_in_batches(messages_with_languages, models=None, max_length=512):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
"""
|
| 41 |
Process messages in batches, creating only one pipeline at a time, and maintain the original order.
|
| 42 |
+
|
| 43 |
Params:
|
| 44 |
messages_with_languages: list of tuples, each containing a message and its detected language
|
| 45 |
models: dict, model paths indexed by Language
|
| 46 |
+
|
| 47 |
Returns:
|
| 48 |
OrderedDict: containing the index as keys and tuple of (message, sentiment result) as values
|
| 49 |
"""
|
|
|
|
| 65 |
messages_by_model[model_name].append((index, message))
|
| 66 |
else:
|
| 67 |
results[index] = {"label": "none", "score": 0}
|
| 68 |
+
|
| 69 |
# Process messages and maintain original order
|
| 70 |
for model_name, batch in messages_by_model.items():
|
| 71 |
sentiment_pipeline = pipeline(model=model_name, device=device_tag)
|
|
|
|
| 80 |
message_map[idx].append(len(chunks) - 1)
|
| 81 |
else:
|
| 82 |
message_map[idx] = [len(chunks) - 1]
|
| 83 |
+
|
| 84 |
chunk_sentiments = sentiment_pipeline(chunks)
|
| 85 |
|
| 86 |
for idx, chunk_indices in message_map.items():
|
|
|
|
| 99 |
# Force garbage collections to remove the model from memory
|
| 100 |
del sentiment_pipeline
|
| 101 |
gc.collect()
|
| 102 |
+
|
| 103 |
# Unify common spellings of the labels
|
| 104 |
for i in range(len(results)):
|
| 105 |
results[i]["label"] = results[i]["label"].lower()
|
|
|
|
| 118 |
the user can provide a model for a given language in the models
|
| 119 |
dictionary. The keys for this dictionary are lingua.Language objects
|
| 120 |
and items HuggingFace model paths.
|
| 121 |
+
|
| 122 |
Params:
|
| 123 |
messages: list of message strings
|
| 124 |
models: dict, huggingface model paths indexed by lingua.Language
|
| 125 |
+
|
| 126 |
Returns:
|
| 127 |
OrderedDict: containing the index as keys and tuple of (message, sentiment result) as values
|
| 128 |
"""
|
|
|
|
| 131 |
]
|
| 132 |
|
| 133 |
results = process_messages_in_batches(messages_with_languages, models)
|
| 134 |
+
return results
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def main():
|
| 138 |
+
st.title("Sentiment Analysis Pipeline")
|
| 139 |
+
messages_input = st.text_area("Enter your messages (one per line):", height=200)
|
| 140 |
+
messages = [message.strip() for message in messages_input.split('\n') if message.strip()]
|
| 141 |
+
|
| 142 |
+
if st.button("Analyze Sentiments"):
|
| 143 |
+
results = sentiment(messages)
|
| 144 |
+
st.write("## Results:")
|
| 145 |
+
for idx, result in enumerate(results):
|
| 146 |
+
message = messages[idx]
|
| 147 |
+
sentiment_label = result["label"]
|
| 148 |
+
sentiment_score = result["score"]
|
| 149 |
+
st.write(f"**Message:** {message}")
|
| 150 |
+
st.write(f"**Sentiment:** {sentiment_label.capitalize()} (Score: {sentiment_score:.2f})")
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
if __name__ == "__main__":
|
| 154 |
+
main()
|
|
|
|
|
|