Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tempfile
|
| 2 |
+
import subprocess
|
| 3 |
+
import time
|
| 4 |
+
|
| 5 |
+
from typing import Optional
|
| 6 |
+
from AinaTheme import AinaGradioTheme
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
import os
|
| 11 |
+
from TTS.utils.synthesizer import Synthesizer
|
| 12 |
+
|
| 13 |
+
from dotenv import load_dotenv
|
| 14 |
+
|
| 15 |
+
torch.manual_seed(0)
|
| 16 |
+
np.random.seed(0)
|
| 17 |
+
|
| 18 |
+
# CleanUnet Dependencies
|
| 19 |
+
|
| 20 |
+
import json
|
| 21 |
+
from copy import deepcopy
|
| 22 |
+
|
| 23 |
+
import numpy as np
|
| 24 |
+
import torch
|
| 25 |
+
|
| 26 |
+
# from util import print_size, sampling
|
| 27 |
+
|
| 28 |
+
import torchaudio
|
| 29 |
+
import torchaudio.transforms as T
|
| 30 |
+
|
| 31 |
+
import random
|
| 32 |
+
|
| 33 |
+
random.seed(0)
|
| 34 |
+
torch.manual_seed(0)
|
| 35 |
+
np.random.seed(0)
|
| 36 |
+
|
| 37 |
+
SAMPLE_RATE = 8000
|
| 38 |
+
|
| 39 |
+
CONFIG = "configs/DNS-large-full.json"
|
| 40 |
+
# CHECKPOINT = "./exp/DNS-large-full/checkpoint/pretrained.pkl"
|
| 41 |
+
|
| 42 |
+
# Parse configs. Globals nicer in this case
|
| 43 |
+
with open(CONFIG) as f:
|
| 44 |
+
data = f.read()
|
| 45 |
+
config = json.loads(data)
|
| 46 |
+
gen_config = config["gen_config"]
|
| 47 |
+
global network_config
|
| 48 |
+
network_config = config["network_config"] # to define wavenet
|
| 49 |
+
global train_config
|
| 50 |
+
train_config = config["train_config"] # train config
|
| 51 |
+
global trainset_config
|
| 52 |
+
trainset_config = config["trainset_config"] # to read trainset configurations
|
| 53 |
+
|
| 54 |
+
# global use_denoise
|
| 55 |
+
# use_denoise = False
|
| 56 |
+
|
| 57 |
+
# setup local experiment path
|
| 58 |
+
exp_path = train_config["exp_path"]
|
| 59 |
+
print('exp_path:', exp_path)
|
| 60 |
+
|
| 61 |
+
# load data
|
| 62 |
+
loader_config = deepcopy(trainset_config)
|
| 63 |
+
loader_config["crop_length_sec"] = 0
|
| 64 |
+
|
| 65 |
+
#############################################################################################################
|
| 66 |
+
|
| 67 |
+
load_dotenv()
|
| 68 |
+
|
| 69 |
+
MAX_INPUT_TEXT_LEN = int(os.environ.get("MAX_INPUT_TEXT_LEN", default=500))
|
| 70 |
+
|
| 71 |
+
# Dynamically read model files, exclude 'speakers.pth'
|
| 72 |
+
model_files = [f for f in os.listdir(os.getcwd()) if f.endswith('.pth') and f != 'speakers.pth']
|
| 73 |
+
model_files.sort(key=lambda x: os.path.getmtime(os.path.join(os.getcwd(), x)), reverse=True)
|
| 74 |
+
|
| 75 |
+
speakers_path = "speakers.pth"
|
| 76 |
+
speakers_list = torch.load(speakers_path)
|
| 77 |
+
speakers_list = list(speakers_list.keys())
|
| 78 |
+
speakers_list = [speaker for speaker in speakers_list]
|
| 79 |
+
|
| 80 |
+
default_speaker_list = speakers_list #
|
| 81 |
+
|
| 82 |
+
# Filtered lists based on dataset
|
| 83 |
+
festcat_speakers = [s for s in speakers_list if len(s) == 3] #
|
| 84 |
+
google_speakers = [s for s in speakers_list if 3 < len(s) < 20] #
|
| 85 |
+
commonvoice_speakers = [s for s in speakers_list if len(s) > 20] #
|
| 86 |
+
|
| 87 |
+
DEFAULT_SPEAKER_ID = os.environ.get("DEFAULT_SPEAKER_ID", default="pau")
|
| 88 |
+
model_file = model_files[0] # change this!!
|
| 89 |
+
|
| 90 |
+
model_path = os.path.join(os.getcwd(), model_file)
|
| 91 |
+
config_path = "config.json"
|
| 92 |
+
|
| 93 |
+
vocoder_path = None
|
| 94 |
+
vocoder_config_path = None
|
| 95 |
+
|
| 96 |
+
synthesizer = Synthesizer(
|
| 97 |
+
model_path, config_path, speakers_path, None, vocoder_path, vocoder_config_path,
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def get_phonetic_transcription(text: str):
|
| 102 |
+
try:
|
| 103 |
+
result = subprocess.run(
|
| 104 |
+
['espeak-ng', '--ipa', '-v', 'ca', text],
|
| 105 |
+
stdout=subprocess.PIPE,
|
| 106 |
+
stderr=subprocess.PIPE,
|
| 107 |
+
text=True,
|
| 108 |
+
check=True
|
| 109 |
+
)
|
| 110 |
+
return result.stdout.strip()
|
| 111 |
+
except subprocess.CalledProcessError as e:
|
| 112 |
+
print(f"An error occurred: {e}")
|
| 113 |
+
return None
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def tts_inference(text: str, speaker_idx: str = None, use_denoise: int = 0):
|
| 117 |
+
# synthesize
|
| 118 |
+
if synthesizer is None:
|
| 119 |
+
raise NameError("model not found")
|
| 120 |
+
t1 = time.time()
|
| 121 |
+
wavs = synthesizer.tts(text, speaker_idx)
|
| 122 |
+
print(type(wavs))
|
| 123 |
+
if use_denoise == 0:
|
| 124 |
+
wavs_den = torch.Tensor(wavs).unsqueeze(0) # one sample
|
| 125 |
+
# wavs_den = denoise(wavs_den).tolist()
|
| 126 |
+
else:
|
| 127 |
+
wavs_den = wavs
|
| 128 |
+
|
| 129 |
+
# return output
|
| 130 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
|
| 131 |
+
# wavs must be a list of integers
|
| 132 |
+
synthesizer.save_wav(wavs, fp)
|
| 133 |
+
t2 = time.time() - t1
|
| 134 |
+
print(round(t2, 2))
|
| 135 |
+
output_audio = fp.name
|
| 136 |
+
|
| 137 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
|
| 138 |
+
# wavs must be a list of integers
|
| 139 |
+
synthesizer.save_wav(wavs_den, fp)
|
| 140 |
+
output_audio_den = fp.name
|
| 141 |
+
|
| 142 |
+
return output_audio, output_audio_den
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
title = "🗣️ Catalan Multispeaker TTS Tester 🗣️"
|
| 146 |
+
description = """
|
| 147 |
+
1️⃣ Enter the text to synthesize.
|
| 148 |
+
2️⃣ Select a voice from the dropdown menu.
|
| 149 |
+
3️⃣ Enjoy!
|
| 150 |
+
"""
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def submit_input(input_, speaker_id, use_dn):
|
| 154 |
+
output_audio = None
|
| 155 |
+
output_phonetic = None
|
| 156 |
+
if input_ is not None and len(input_) < MAX_INPUT_TEXT_LEN:
|
| 157 |
+
output_audio, output_audio_den = tts_inference(input_, speaker_id, use_dn)
|
| 158 |
+
output_phonetic = get_phonetic_transcription(input_)
|
| 159 |
+
else:
|
| 160 |
+
gr.Warning(f"Your text exceeds the {MAX_INPUT_TEXT_LEN}-character limit.")
|
| 161 |
+
return output_audio, output_audio_den, output_phonetic
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def change_interactive(text):
|
| 165 |
+
input_state = text
|
| 166 |
+
if input_state.strip() != "":
|
| 167 |
+
return gr.update(interactive=True)
|
| 168 |
+
else:
|
| 169 |
+
return gr.update(interactive=False)
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def clean():
|
| 173 |
+
return (
|
| 174 |
+
None,
|
| 175 |
+
None,
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
with gr.Blocks(**AinaGradioTheme().get_kwargs()) as app:
|
| 180 |
+
gr.Markdown(f"<h1 style='text-align: center; margin-bottom: 1rem'>{title}</h1>")
|
| 181 |
+
gr.Markdown(description)
|
| 182 |
+
|
| 183 |
+
with gr.Row(equal_height=False):
|
| 184 |
+
|
| 185 |
+
with gr.Column(variant='panel'):
|
| 186 |
+
input_ = gr.Textbox(
|
| 187 |
+
label="Text",
|
| 188 |
+
value="Introdueix el text a sintetitzar.",
|
| 189 |
+
lines=4
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
dataset = gr.Radio(["All", "Festcat", "Google TTS", "CommonVoice"], label="Speakers Dataset",
|
| 193 |
+
value="All")
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
def update_speaker_list(dataset):
|
| 197 |
+
print("Updating speaker list based on dataset:", dataset)
|
| 198 |
+
if dataset == "Festcat":
|
| 199 |
+
current_speakers = festcat_speakers
|
| 200 |
+
elif dataset == "Google TTS":
|
| 201 |
+
current_speakers = google_speakers
|
| 202 |
+
elif dataset == "CommonVoice":
|
| 203 |
+
current_speakers = commonvoice_speakers
|
| 204 |
+
else:
|
| 205 |
+
current_speakers = speakers_list
|
| 206 |
+
|
| 207 |
+
return gr.update(choices=current_speakers, value=current_speakers[0])
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
speaker_id = gr.Dropdown(label="Select a voice", choices=speakers_list, value=DEFAULT_SPEAKER_ID,
|
| 211 |
+
interactive=True)
|
| 212 |
+
dataset.change(fn=update_speaker_list, inputs=dataset, outputs=speaker_id)
|
| 213 |
+
|
| 214 |
+
# model = gr.Dropdown(label="Select a model", choices=model_files, value=DEFAULT_MODEL_FILE_NAME)
|
| 215 |
+
with gr.Row():
|
| 216 |
+
clear_btn = gr.ClearButton(value='Clean', components=[input_])
|
| 217 |
+
# clear_btn = gr.Button(
|
| 218 |
+
# "Clean",
|
| 219 |
+
# )
|
| 220 |
+
submit_btn = gr.Button(
|
| 221 |
+
"Submit",
|
| 222 |
+
variant="primary",
|
| 223 |
+
)
|
| 224 |
+
use_denoise = gr.Radio(choices=[("Yes", 0), ("No", 1)], value=0)
|
| 225 |
+
with gr.Column(variant='panel'):
|
| 226 |
+
output_audio = gr.Audio(label="Output", type="filepath", autoplay=True, show_share_button=False)
|
| 227 |
+
output_audio_den = gr.Audio(label="Output denoised", type="filepath", autoplay=False,
|
| 228 |
+
show_share_button=False)
|
| 229 |
+
|
| 230 |
+
output_phonetic = gr.Textbox(label="Phonetic Transcription", readonly=True)
|
| 231 |
+
|
| 232 |
+
for button in [submit_btn]: # clear_btn
|
| 233 |
+
input_.change(fn=change_interactive, inputs=[input_], outputs=button)
|
| 234 |
+
|
| 235 |
+
# clear_btn.click(fn=clean, inputs=[], outputs=[input_, output_audio, output_phonetic], queue=False)
|
| 236 |
+
submit_btn.click(fn=submit_input, inputs=[input_, speaker_id, use_denoise], outputs=[output_audio,
|
| 237 |
+
output_audio_den,
|
| 238 |
+
output_phonetic])
|
| 239 |
+
|
| 240 |
+
app.queue(concurrency_count=1, api_open=False)
|
| 241 |
+
app.launch(show_api=False, server_name="0.0.0.0", server_port=7860)
|