File size: 1,988 Bytes
1a02e83
7232215
0bfd754
1a02e83
 
 
25ba0c9
1a02e83
 
 
7232215
 
 
 
 
 
 
 
 
1a02e83
25ba0c9
 
1a02e83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
627ba9d
1a02e83
 
 
 
 
627ba9d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel, Field
from typing import Optional
from cold.classifier import ToxicTextClassifier
import torch

app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


model = ToxicTextClassifier()
model.load_state_dict(torch.load("output/lited_best.pth",map_location="cpu"))


class PredictionInput(BaseModel):
    text: str = Field(..., title="Text to classify", description="The text to classify for malicious content")
    context: Optional[str] = Field(None, title="Context for classification", description="Optional context to provide additional information for classification")

@app.post("/predict")
def predict(input: PredictionInput):
    try:
        if not input.text:
            raise HTTPException(status_code=400, detail="Text input is required")
        elif len(input.text) > 512:
            raise HTTPException(status_code=400, detail="Text input exceeds maximum length of 512 characters")
        if input.context and len(input.context) > 512:
            raise HTTPException(status_code=400, detail="Context input exceeds maximum length of 512 characters")
        if not input.context:
            result = model.predict(input.text, device="cpu")
            print(result)
            return {"text": input.text, "prediction": result[0]["prediction"], "probabilities": result[0]["probabilities"]}
        else:
            result = model.predict([[input.text,input.context]], device="cpu")
            return {"text": input.text, "context": input.context, "prediction": result[0]["prediction"], "probabilities": result[0]["probabilities"]}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))
    
app.mount("/", StaticFiles(directory="out", html=True), name="static")