Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import torch | |
| from diffusers import FluxInpaintPipeline | |
| import gradio as gr | |
| import re | |
| from PIL import Image | |
| import flux1_inpaint | |
| import os | |
| import numpy as np | |
| import shutil | |
| #shutil.rmtree("/home/user/app/.gradio/cached_examples/23") | |
| def sanitize_prompt(prompt): | |
| # Allow only alphanumeric characters, spaces, and basic punctuation | |
| allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]") | |
| sanitized_prompt = allowed_chars.sub("", prompt) | |
| return sanitized_prompt | |
| def process_images(image, image2=None,prompt="a girl",inpaint_model="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0,progress=gr.Progress(track_tqdm=True)): | |
| # I'm not sure when this happen | |
| progress(0, desc="start-process-images") | |
| print("start-process-images") | |
| if not isinstance(image, dict): | |
| if image2 == None: | |
| print("empty mask") | |
| return image,None | |
| else: | |
| image = dict({'background': image, 'layers': [image2]}) | |
| if image2!=None: | |
| #print("use image2") | |
| mask = image2 | |
| else: | |
| if len(image['layers']) == 0: | |
| print("empty mask") | |
| return image | |
| print("use layer") | |
| mask = image['layers'][0] | |
| def process_image(image,mask_image,prompt="a person",model_id="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0,num_inference_steps=4): | |
| if image == None: | |
| return None | |
| pipe = FluxInpaintPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) | |
| pipe.to("cuda") | |
| generators = [] | |
| generator = torch.Generator("cuda").manual_seed(seed) | |
| generators.append(generator) | |
| # more parameter see https://huggingface.co/docs/diffusers/api/pipelines/flux#diffusers.FluxInpaintPipeline | |
| output = pipe(prompt=prompt, image=image, mask_image=mask_image,generator=generator,strength=strength) | |
| return output.images[0] | |
| output = flux1_inpaint.process_image(image["background"],mask,prompt,inpaint_model,strength,seed) | |
| return output,mask | |
| def read_file(path: str) -> str: | |
| with open(path, 'r', encoding='utf-8') as f: | |
| content = f.read() | |
| return content | |
| def example_out(image,image_mask,prompt,strength,example_id): | |
| # input | |
| #parent,file=os.path.split(image_mask) # image is complex dict | |
| #base,ext = os.path.splitext(file) | |
| #key = base.split("_")[0] | |
| return f"images/{example_id}.jpg" | |
| #loaded_image = Image.open(f"images/{example_id}.jpg") | |
| #return loaded_image | |
| #return np.array(loaded_image) | |
| css=""" | |
| #col-left { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| #col-right { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| """ | |
| demo_blocks = gr.Blocks(css=css, elem_id="demo-container") | |
| with demo_blocks as demo: | |
| with gr.Column(): | |
| gr.HTML(read_file("demo_header.html")) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.ImageEditor(height=800,sources=['upload','clipboard'],transforms=[],image_mode='RGB', layers=False, elem_id="image_upload", type="pil", label="Upload",brush=gr.Brush(colors=["#fff"], color_mode="fixed")) | |
| with gr.Row(elem_id="prompt-container", equal_height=False): | |
| with gr.Row(): | |
| prompt = gr.Textbox(label="Prompt",value="a eyes closed girl,shut eyes",placeholder="Your prompt (what you want in place of what is erased)", elem_id="prompt") | |
| btn = gr.Button("Inpaint", elem_id="run_button",variant="primary") | |
| image_mask = gr.Image(sources=['upload','clipboard'], elem_id="mask_upload", type="pil", label="Mask_Upload",height=400, value=None) | |
| with gr.Accordion(label="Advanced Settings", open=False): | |
| with gr.Row( equal_height=True): | |
| strength = gr.Number(value=0.75, minimum=0, maximum=1.0, step=0.01, label="Inpaint strength") | |
| seed = gr.Number(value=0, minimum=0, step=1, label="Inpaint seed") | |
| models = ["black-forest-labs/FLUX.1-schnell"] | |
| inpaint_model = gr.Dropdown(label="modes", choices=models, value="black-forest-labs/FLUX.1-schnell") | |
| id_input=gr.Text(label="Name", visible=False) | |
| with gr.Column(): | |
| image_out = gr.Image(height=800,sources=[],label="Output", elem_id="output-img",format="webp") | |
| mask_out = gr.Image(height=800,sources=[],label="Mask", elem_id="mask-img",format="jpeg") | |
| btn.click(fn=process_images, inputs=[image, image_mask,prompt,inpaint_model,strength,seed], outputs =[image_out,mask_out], api_name='infer') | |
| gr.Examples( | |
| examples=[ | |
| ["images/00547245_99.jpg", "images/00547245_99_mask.jpg","a beautiful girl,eyes closed",0.8,"images/00547245.jpg"], | |
| ["images/00538245_paint.jpg", "images/00538245_mask.jpg","a beautiful girl,wearing t-shirt",0.7,"images/00538245.jpg"], | |
| ["images/00207245_18.jpg", "images/00207245_18_mask.jpg","a beautiful girl,mouth opened",0.2,"images/00207245.jpg"] | |
| ] | |
| , | |
| #fn=example_out, | |
| inputs=[image,image_mask,prompt,strength,image_out], | |
| #outputs=[test_out], | |
| #cache_examples=False, | |
| ) | |
| gr.HTML( | |
| """ | |
| """ | |
| ) | |
| demo_blocks.queue(max_size=25).launch(share=False,debug=True) | |