Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,84 +4,58 @@ import torch
|
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 5 |
import gradio as gr
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
model_id = "Kendamarron/Tokara-0.5B-Chat-v0.1"
|
| 16 |
-
model_id = "Qwen/Qwen2-0.5B-Instruct"
|
| 17 |
-
|
| 18 |
-
device = "auto" # torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 19 |
-
dtype = torch.bfloat16
|
| 20 |
-
|
| 21 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token)
|
| 22 |
-
|
| 23 |
-
print(model_id,device,dtype)
|
| 24 |
-
histories = []
|
| 25 |
-
#model = None
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
def call_generate_text(prompt, system_message="You are a helpful assistant."):
|
| 29 |
-
if prompt =="":
|
| 30 |
-
print("empty prompt return")
|
| 31 |
-
return ""
|
| 32 |
-
|
| 33 |
-
global histories
|
| 34 |
-
#global model
|
| 35 |
-
#if model != None:# and model.is_cuda:
|
| 36 |
-
# print("Model is alive")
|
| 37 |
-
#else:
|
| 38 |
-
# model = AutoModelForCausalLM.from_pretrained(
|
| 39 |
-
# model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
|
| 40 |
-
#)
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
|
| 52 |
-
|
| 53 |
-
text = generate_text(messages)
|
| 54 |
-
histories += [user_message,{"role": "assistant", "content": text}]
|
| 55 |
-
#model.to("cpu")
|
| 56 |
-
return text
|
| 57 |
-
except RuntimeError as e:
|
| 58 |
-
print(f"An unexpected error occurred: {e}")
|
| 59 |
-
#model = None
|
| 60 |
-
|
| 61 |
-
return ""
|
| 62 |
-
|
| 63 |
-
iface = gr.Interface(
|
| 64 |
-
fn=call_generate_text,
|
| 65 |
-
inputs=[
|
| 66 |
-
gr.Textbox(lines=3, label="Input Prompt"),
|
| 67 |
-
gr.Textbox(lines=2, label="System Message", value="あなたは親切なアシスタントで常に日本語で返答します。"),
|
| 68 |
-
],
|
| 69 |
-
outputs=gr.Textbox(label="Generated Text"),
|
| 70 |
-
title=f"{model_id}",
|
| 71 |
-
description=f"{model_id} CPU",
|
| 72 |
-
)
|
| 73 |
-
print("Initialized")
|
| 74 |
|
| 75 |
@spaces.GPU(duration=120)
|
| 76 |
def generate_text(messages):
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device) #pipeline has not to(device)
|
| 84 |
-
result = text_generator(messages, max_new_tokens=256, do_sample=True, temperature=0.7,repetition_penalty=1.1,top_p=0.95,top_k=40)
|
| 85 |
|
| 86 |
generated_output = result[0]["generated_text"]
|
| 87 |
if isinstance(generated_output, list):
|
|
@@ -94,6 +68,24 @@ def generate_text(messages):
|
|
| 94 |
else:
|
| 95 |
return "Unexpected output format."
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
if __name__ == "__main__":
|
| 98 |
-
|
| 99 |
-
|
|
|
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 5 |
import gradio as gr
|
| 6 |
|
| 7 |
+
text_generator = None
|
| 8 |
+
is_hugging_face = False
|
| 9 |
+
def init():
|
| 10 |
+
global text_generator
|
| 11 |
+
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 12 |
+
if not huggingface_token:
|
| 13 |
+
pass
|
| 14 |
+
print("no HUGGINGFACE_TOKEN if you need set secret ")
|
| 15 |
+
#raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
|
| 16 |
+
|
| 17 |
+
model_id = "google/gemma-2-9b-it"
|
| 18 |
+
model_id = "Qwen/Qwen2-0.5B-Instruct"
|
| 19 |
+
|
| 20 |
+
device = "auto" # torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 21 |
+
device = "cuda"
|
| 22 |
+
dtype = torch.bfloat16
|
| 23 |
+
|
| 24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token)
|
| 25 |
+
|
| 26 |
+
print(model_id,device,dtype)
|
| 27 |
+
histories = []
|
| 28 |
+
#model = None
|
| 29 |
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
if not is_hugging_face:
|
| 33 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 34 |
+
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
|
| 35 |
+
)
|
| 36 |
+
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device ) #pipeline has not to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
if next(model.parameters()).is_cuda:
|
| 39 |
+
print("The model is on a GPU")
|
| 40 |
+
else:
|
| 41 |
+
print("The model is on a CPU")
|
| 42 |
|
| 43 |
+
#print(f"text_generator.device='{text_generator.device}")
|
| 44 |
+
if str(text_generator.device).strip() == 'cuda':
|
| 45 |
+
print("The pipeline is using a GPU")
|
| 46 |
+
else:
|
| 47 |
+
print("The pipeline is using a CPU")
|
| 48 |
|
| 49 |
+
print("initialized")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
@spaces.GPU(duration=120)
|
| 52 |
def generate_text(messages):
|
| 53 |
+
if is_hugging_face:#need everytime initialize for ZeroGPU
|
| 54 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 55 |
+
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
|
| 56 |
+
)
|
| 57 |
+
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device ) #pipeline has not to(device)
|
| 58 |
+
result = text_generator(messages, max_new_tokens=256, do_sample=True, temperature=0.7)
|
|
|
|
|
|
|
| 59 |
|
| 60 |
generated_output = result[0]["generated_text"]
|
| 61 |
if isinstance(generated_output, list):
|
|
|
|
| 68 |
else:
|
| 69 |
return "Unexpected output format."
|
| 70 |
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def call_generate_text(message, history):
|
| 74 |
+
# history.append({"role": "user", "content": message})
|
| 75 |
+
print(message)
|
| 76 |
+
print(history)
|
| 77 |
+
|
| 78 |
+
messages = history+[{"role":"user","content":message}]
|
| 79 |
+
try:
|
| 80 |
+
text = generate_text(messages)
|
| 81 |
+
return text
|
| 82 |
+
except RuntimeError as e:
|
| 83 |
+
print(f"An unexpected error occurred: {e}")
|
| 84 |
+
|
| 85 |
+
return ""
|
| 86 |
+
|
| 87 |
+
demo = gr.ChatInterface(call_generate_text,type="messages")
|
| 88 |
+
|
| 89 |
if __name__ == "__main__":
|
| 90 |
+
init()
|
| 91 |
+
demo.launch(share=True)
|