Spaces:
Sleeping
Sleeping
| import spaces | |
| import os | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
| import gradio as gr | |
| huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
| if not huggingface_token: | |
| pass | |
| print("no HUGGINGFACE_TOKEN if you need set secret ") | |
| #raise ValueError("HUGGINGFACE_TOKEN environment variable is not set") | |
| #model_id = "Qwen/Qwen1.5-0.5B-Chat" | |
| model_id = "Kendamarron/Tokara-0.5B-Chat-v0.1" | |
| model_id = "Qwen/Qwen2-0.5B-Instruct" | |
| device = "auto" # torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| dtype = torch.bfloat16 | |
| tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token) | |
| print(model_id,device,dtype) | |
| histories = [] | |
| #model = None | |
| def call_generate_text(prompt, system_message="You are a helpful assistant."): | |
| if prompt =="": | |
| print("empty prompt return") | |
| return "" | |
| global histories | |
| #global model | |
| #if model != None:# and model.is_cuda: | |
| # print("Model is alive") | |
| #else: | |
| # model = AutoModelForCausalLM.from_pretrained( | |
| # model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device | |
| #) | |
| messages = [ | |
| {"role": "system", "content": system_message}, | |
| ] | |
| messages += histories | |
| user_message = {"role": "user", "content": prompt} | |
| messages += [user_message] | |
| try: | |
| text = generate_text(messages) | |
| histories += [user_message,{"role": "assistant", "content": text}] | |
| #model.to("cpu") | |
| return text | |
| except RuntimeError as e: | |
| print(f"An unexpected error occurred: {e}") | |
| #model = None | |
| return "" | |
| iface = gr.Interface( | |
| fn=call_generate_text, | |
| inputs=[ | |
| gr.Textbox(lines=3, label="Input Prompt"), | |
| gr.Textbox(lines=2, label="System Message", value="あなたは親切なアシスタントで常に日本語で返答します。"), | |
| ], | |
| outputs=gr.Textbox(label="Generated Text"), | |
| title=f"{model_id}", | |
| description=f"{model_id} CPU", | |
| ) | |
| print("Initialized") | |
| def generate_text(messages): | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device | |
| ) | |
| text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device) #pipeline has not to(device) | |
| result = text_generator(messages, max_new_tokens=256, do_sample=True, temperature=0.7,repetition_penalty=1.1,top_p=0.95,top_k=40) | |
| generated_output = result[0]["generated_text"] | |
| if isinstance(generated_output, list): | |
| for message in reversed(generated_output): | |
| if message.get("role") == "assistant": | |
| content= message.get("content", "No content found.") | |
| return content | |
| return "No assistant response found." | |
| else: | |
| return "Unexpected output format." | |
| if __name__ == "__main__": | |
| print("Main") | |
| iface.launch() |