Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,18 +11,35 @@ from typing import Dict, List, Any, Optional
|
|
| 11 |
from transformers.pipelines import pipeline
|
| 12 |
|
| 13 |
# Initialize the model
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# Function to generate embeddings from an image
|
| 17 |
def generate_embedding(image):
|
| 18 |
if image is None:
|
| 19 |
-
return
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# Convert to PIL Image if needed
|
| 22 |
if not isinstance(image, Image.Image):
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
# Generate embedding using the transformers pipeline
|
| 27 |
result = model(image)
|
| 28 |
|
|
@@ -47,14 +64,14 @@ def generate_embedding(image):
|
|
| 47 |
embedding_list = list(result)
|
| 48 |
else:
|
| 49 |
print("Result is None")
|
| 50 |
-
return
|
| 51 |
except:
|
| 52 |
print(f"Couldn't convert result of type {type(result)} to list")
|
| 53 |
-
return
|
| 54 |
|
| 55 |
# Ensure we have a valid embedding list
|
| 56 |
if embedding_list is None:
|
| 57 |
-
return
|
| 58 |
|
| 59 |
# Calculate embedding dimension
|
| 60 |
embedding_dim = len(embedding_list)
|
|
@@ -65,7 +82,7 @@ def generate_embedding(image):
|
|
| 65 |
}, f"Dimension: {embedding_dim}"
|
| 66 |
except Exception as e:
|
| 67 |
print(f"Error generating embedding: {str(e)}")
|
| 68 |
-
return
|
| 69 |
|
| 70 |
# Function to generate embeddings from an image URL
|
| 71 |
def embed_image_from_url(image_url):
|
|
@@ -101,7 +118,10 @@ app = gr.Interface(
|
|
| 101 |
],
|
| 102 |
title="Nomic Vision Embedding Model (nomic-ai/nomic-embed-vision-v1.5)",
|
| 103 |
description="Upload an image to generate embeddings using the Nomic Vision model.",
|
| 104 |
-
examples=[
|
|
|
|
|
|
|
|
|
|
| 105 |
allow_flagging="never"
|
| 106 |
)
|
| 107 |
|
|
|
|
| 11 |
from transformers.pipelines import pipeline
|
| 12 |
|
| 13 |
# Initialize the model
|
| 14 |
+
try:
|
| 15 |
+
model = pipeline("image-feature-extraction", model="nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
|
| 16 |
+
model_loaded = True
|
| 17 |
+
except Exception as e:
|
| 18 |
+
print(f"Error loading model: {str(e)}")
|
| 19 |
+
model = None
|
| 20 |
+
model_loaded = False
|
| 21 |
|
| 22 |
# Function to generate embeddings from an image
|
| 23 |
def generate_embedding(image):
|
| 24 |
if image is None:
|
| 25 |
+
return {"error": "No image provided"}, "No image provided"
|
| 26 |
+
|
| 27 |
+
if not model_loaded:
|
| 28 |
+
return {"error": "Model not loaded properly"}, "Error: Model not loaded properly"
|
| 29 |
|
| 30 |
# Convert to PIL Image if needed
|
| 31 |
if not isinstance(image, Image.Image):
|
| 32 |
+
try:
|
| 33 |
+
image = Image.fromarray(image)
|
| 34 |
+
except Exception as e:
|
| 35 |
+
print(f"Error converting image: {str(e)}")
|
| 36 |
+
return {"error": f"Invalid image format: {str(e)}"}, f"Error: Invalid image format"
|
| 37 |
|
| 38 |
try:
|
| 39 |
+
# Check if model is loaded before calling it
|
| 40 |
+
if model is None:
|
| 41 |
+
return {"error": "Model not loaded properly"}, "Error: Model not loaded properly"
|
| 42 |
+
|
| 43 |
# Generate embedding using the transformers pipeline
|
| 44 |
result = model(image)
|
| 45 |
|
|
|
|
| 64 |
embedding_list = list(result)
|
| 65 |
else:
|
| 66 |
print("Result is None")
|
| 67 |
+
return {"error": "Failed to generate embedding"}, "Failed to generate embedding"
|
| 68 |
except:
|
| 69 |
print(f"Couldn't convert result of type {type(result)} to list")
|
| 70 |
+
return {"error": "Failed to process embedding"}, "Failed to process embedding"
|
| 71 |
|
| 72 |
# Ensure we have a valid embedding list
|
| 73 |
if embedding_list is None:
|
| 74 |
+
return {"error": "Failed to generate embedding"}, "Failed to generate embedding"
|
| 75 |
|
| 76 |
# Calculate embedding dimension
|
| 77 |
embedding_dim = len(embedding_list)
|
|
|
|
| 82 |
}, f"Dimension: {embedding_dim}"
|
| 83 |
except Exception as e:
|
| 84 |
print(f"Error generating embedding: {str(e)}")
|
| 85 |
+
return {"error": f"Error generating embedding: {str(e)}"}, f"Error: {str(e)}"
|
| 86 |
|
| 87 |
# Function to generate embeddings from an image URL
|
| 88 |
def embed_image_from_url(image_url):
|
|
|
|
| 118 |
],
|
| 119 |
title="Nomic Vision Embedding Model (nomic-ai/nomic-embed-vision-v1.5)",
|
| 120 |
description="Upload an image to generate embeddings using the Nomic Vision model.",
|
| 121 |
+
examples=[
|
| 122 |
+
["nomic/examples/example1.jpg"],
|
| 123 |
+
["nomic/examples/example2.jpg"]
|
| 124 |
+
],
|
| 125 |
allow_flagging="never"
|
| 126 |
)
|
| 127 |
|