Good.KTTS / app.py
Aid3445's picture
Update app.py
a37cabf verified
import gradio as gr
import os
import tempfile
import soundfile as sf
import numpy as np
import re
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
import gc
from huggingface_hub import hf_hub_download
import json
import onnxruntime as ort
import warnings
# Suppress warnings
warnings.filterwarnings("ignore")
# Fix for OpenMP duplicate library error
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
# Force CPU usage for ONNX Runtime to avoid GPU issues
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
class DirectKittenTTS:
"""Direct implementation of KittenTTS using ONNX Runtime"""
def __init__(self, model_path, voices_path):
"""Initialize with direct paths to model and voices files"""
self.session = ort.InferenceSession(model_path, providers=['CPUExecutionProvider'])
self.voices_data = np.load(voices_path)
self.voice_list = list(self.voices_data.keys())
print(f"Loaded model with voices: {self.voice_list}")
def text_to_phonemes(self, text):
"""Convert text to phonemes with multiple fallback strategies"""
try:
# Try to use g2p_en for English phonemization
try:
from g2p_en import G2p
g2p = G2p()
phonemes = g2p(text)
# Convert to string of phonemes separated by spaces
phonemes = ' '.join(phonemes)
return phonemes
except ImportError:
print("g2p_en not available, trying phonemizer")
# Try to use phonemizer with espeak backend
try:
from phonemizer import phonemize
phonemes = phonemize(text, backend='espeak', language='en-us')
return phonemes
except ImportError:
print("phonemizer not available, using basic cleaning")
except Exception as e:
print(f"phonemizer failed: {e}")
# Fallback to basic cleaning
text = text.lower()
text = re.sub(r'[^\w\s\.\,\!\?\;\:\-\'\"]', '', text)
return text
except Exception as e:
print(f"Error in phoneme conversion: {e}")
# Last resort: return cleaned text
text = text.lower()
text = re.sub(r'[^\w\s\.\,\!\?\;\:\-\'\"]', '', text)
return text
def generate(self, text, voice='expr-voice-2-m', speed=1.0):
"""Generate audio from text with improved text processing"""
try:
# Get voice embedding
if voice not in self.voices_data:
print(f"Voice {voice} not found, using first available voice")
voice = self.voice_list[0]
voice_embedding = self.voices_data[voice]
# Convert text to phonemes
phonemes = self.text_to_phonemes(text)
# Prepare input for ONNX model
max_length = 512
# Try to use a proper tokenizer if available
try:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
text_encoded = tokenizer.encode(phonemes, truncation=True, max_length=max_length)
# Add padding if needed
text_encoded = text_encoded + [0] * (max_length - len(text_encoded))
except:
# Fallback to character-level encoding
text_encoded = [ord(c) for c in phonemes[:max_length]]
text_encoded = text_encoded + [0] * (max_length - len(text_encoded))
text_input = np.array([text_encoded], dtype=np.int64)
# Get input names from the model
input_names = [inp.name for inp in self.session.get_inputs()]
# Prepare inputs dict
inputs = {}
for name in input_names:
if 'text' in name.lower() or 'input' in name.lower():
inputs[name] = text_input
elif 'voice' in name.lower() or 'speaker' in name.lower():
inputs[name] = voice_embedding.reshape(1, -1)
elif 'speed' in name.lower():
inputs[name] = np.array([[speed]], dtype=np.float32)
# Reset model state between generations
try:
dummy_inputs = {name: np.zeros_like(inputs[name]) for name in inputs}
self.session.run(None, dummy_inputs)
except:
pass
# Run inference
outputs = self.session.run(None, inputs)
# Get audio output (usually the first output)
audio = outputs[0]
# Ensure audio is 1D
if audio.ndim > 1:
audio = audio.squeeze()
# Apply speed adjustment if not handled by model
if speed != 1.0:
# Simple speed adjustment by resampling
original_length = len(audio)
new_length = int(original_length / speed)
indices = np.linspace(0, original_length - 1, new_length)
audio = np.interp(indices, np.arange(original_length), audio)
return audio
except Exception as e:
print(f"Error in generate: {e}")
# Return a simple sine wave as fallback
duration = 1.0
sample_rate = 24000
t = np.linspace(0, duration, int(sample_rate * duration))
audio = np.sin(2 * np.pi * 440 * t) * 0.3
return audio
class KittenTTSGradio:
def __init__(self):
"""Initialize the KittenTTS model and settings"""
self.model = None
self.available_voices = [
'expr-voice-2-m', 'expr-voice-2-f', 'expr-voice-3-m', 'expr-voice-3-f',
'expr-voice-4-m', 'expr-voice-4-f', 'expr-voice-5-m', 'expr-voice-5-f'
]
# Limit workers to avoid conflicts
self.max_workers = min(4, max(1, os.cpu_count() - 1)) if os.cpu_count() else 2
self.model_loaded = False
def ensure_model_loaded(self):
"""Ensure model is loaded before use"""
if not self.model_loaded:
self.load_model()
def download_and_load_model(self, repo_id):
"""Download model files and load them directly"""
try:
print(f"Downloading model files from {repo_id}...")
# Download config file
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
# Read config to get file names
with open(config_path, 'r') as f:
config = json.load(f)
# Get model filename from config or use defaults
model_filename = config.get("model_file")
if not model_filename:
# Try to guess based on repo name
if "mini" in repo_id:
model_filename = "kitten_tts_mini_v0_1.onnx"
elif "nano" in repo_id and "0.2" in repo_id:
model_filename = "kitten_tts_nano_v0_2.onnx"
else:
model_filename = "kitten_tts_nano_v0_1.onnx"
# Download model file
print(f"Downloading model file: {model_filename}")
model_path = hf_hub_download(repo_id=repo_id, filename=model_filename)
# Download voices file
voices_filename = config.get("voices", "voices.npz")
print(f"Downloading voices file: {voices_filename}")
voices_path = hf_hub_download(repo_id=repo_id, filename=voices_filename)
print(f"Files downloaded: {model_path}, {voices_path}")
# Create our direct ONNX model
self.model = DirectKittenTTS(model_path, voices_path)
# Update available voices based on what's actually in the file
if hasattr(self.model, 'voice_list'):
self.available_voices = self.model.voice_list
return True
except Exception as e:
print(f"Failed to download and load {repo_id}: {e}")
return False
def load_model(self):
"""Load the TTS model with multiple fallback options"""
if self.model_loaded:
return
try:
print("Loading KittenTTS model...")
# First, try to import and use KittenTTS if available
try:
from kittentts import KittenTTS
# Try loading with the library first
for repo_id in ["KittenML/kitten-tts-mini-0.1", "KittenML/kitten-tts-nano-0.2"]:
try:
print(f"Trying to load {repo_id} with KittenTTS library...")
self.model = KittenTTS(repo_id)
self.model_loaded = True
print(f"Successfully loaded {repo_id} with KittenTTS!")
return
except:
continue
except ImportError:
print("KittenTTS library not available, using direct ONNX loading")
# If library loading failed, use our direct implementation
strategies = [
("KittenML/kitten-tts-mini-0.1", "mini"),
("KittenML/kitten-tts-nano-0.2", "nano v0.2"),
("KittenML/kitten-tts-nano-0.1", "nano v0.1"),
]
for repo_id, name in strategies:
print(f"Trying to load {name} model directly...")
if self.download_and_load_model(repo_id):
self.model_loaded = True
print(f"Successfully loaded {name} model!")
return
# If all strategies failed
raise Exception("Failed to load any KittenTTS model")
except Exception as e:
print(f"Error loading model: {e}")
self.model_loaded = False
raise e
def split_into_sentences(self, text):
"""Split text into sentences"""
text = re.sub(r'\s+', ' ', text)
text = text.strip()
sentences = re.split(r'(?<=[.!?])\s+', text)
processed_sentences = []
for sentence in sentences:
sentence = sentence.strip()
if sentence:
if not sentence.endswith(('.', '!', '?')):
sentence += '.'
processed_sentences.append(sentence)
return processed_sentences
def group_sentences_into_chunks(self, sentences, chunk_size):
"""Group sentences into chunks of specified size"""
if chunk_size <= 0:
chunk_size = 1
chunks = []
for i in range(0, len(sentences), chunk_size):
chunk = ' '.join(sentences[i:i + chunk_size])
chunks.append(chunk)
return chunks
def clean_text_for_model(self, text):
"""Clean text for the TTS model"""
if not text:
return "Hello."
text = re.sub(r'[^\w\s\.\,\!\?\;\:\-\'\"]', '', text)
text = re.sub(r'\s+', ' ', text)
text = text.strip()
if len(text) < 5:
text = "Hello."
return text
def safe_generate_audio(self, text, voice, speed):
"""Generate audio with fallback strategies"""
self.ensure_model_loaded()
if not self.model:
raise Exception("Model not loaded")
# Try original text
try:
audio = self.model.generate(text, voice=voice, speed=speed)
return audio
except Exception as e:
print(f"Original attempt failed: {e}")
# Try cleaned text
try:
cleaned_text = self.clean_text_for_model(text)
audio = self.model.generate(cleaned_text, voice=voice, speed=speed)
return audio
except Exception as e:
print(f"Cleaned attempt failed: {e}")
# Try basic fallback
try:
words = text.split()[:5]
basic_text = ' '.join(words)
if not basic_text.endswith(('.', '!', '?')):
basic_text += '.'
audio = self.model.generate(basic_text or "Hello.", voice=voice, speed=speed)
return audio
except Exception as e:
print(f"Basic attempt failed: {e}")
raise Exception("All audio generation attempts failed")
def process_single_sentence(self, sentence, voice, speed):
"""Process a single sentence with better error handling"""
try:
# Clean the sentence
cleaned_sentence = self.clean_text_for_model(sentence)
# Add a small delay between processing to avoid potential state issues
time.sleep(0.1)
# Generate audio
audio = self.safe_generate_audio(cleaned_sentence, voice=voice, speed=speed)
# Explicit garbage collection
gc.collect()
return audio
except Exception as e:
print(f"Error processing sentence: '{sentence[:30]}...': {e}")
# Return a short silence as fallback
sample_rate = 24000
silence_duration = 0.5 # seconds
silence = np.zeros(int(sample_rate * silence_duration))
return silence
def convert_text_to_speech(self, text, voice, speed, chunk_size, use_multithreading, progress=gr.Progress()):
"""Main conversion function for Gradio with model state reset"""
try:
self.ensure_model_loaded()
except Exception as e:
raise gr.Error(f"Failed to load model: {str(e)}")
if not text or not text.strip():
raise gr.Error("Please enter some text to convert.")
try:
sentences = self.split_into_sentences(text)
if not sentences:
raise gr.Error("No valid sentences found in the text.")
chunks = self.group_sentences_into_chunks(sentences, chunk_size)
total_chunks = len(chunks)
total_sentences = len(sentences)
chunk_label = "chunk" if chunk_size == 1 else f"chunk ({chunk_size} sentences each)"
progress(0, desc=f"Processing {total_sentences} sentences in {total_chunks} {chunk_label}s...")
# Reset model state before starting
if hasattr(self.model, 'session'):
try:
input_names = [inp.name for inp in self.model.session.get_inputs()]
dummy_inputs = {}
for name in input_names:
if 'text' in name.lower() or 'input' in name.lower():
dummy_inputs[name] = np.zeros((1, 512), dtype=np.int64)
else:
dummy_inputs[name] = np.zeros((1, 256), dtype=np.float32)
self.model.session.run(None, dummy_inputs)
except:
pass
# Create a list to hold results in the correct order
audio_chunks = [None] * total_chunks
if use_multithreading and total_chunks > 1:
# Process chunks in parallel with limited workers
with ThreadPoolExecutor(max_workers=min(self.max_workers, 4)) as executor:
# Submit all tasks
future_to_index = {
executor.submit(self.process_single_sentence, chunk, voice, speed): i
for i, chunk in enumerate(chunks)
}
completed = 0
# Process as they complete
for future in as_completed(future_to_index):
index = future_to_index[future]
try:
audio = future.result()
audio_chunks[index] = audio # Place at the correct index
completed += 1
progress(completed / total_chunks,
desc=f"Processed {completed}/{total_chunks} {chunk_label}s")
# Reset model state after each chunk
if hasattr(self.model, 'session'):
try:
input_names = [inp.name for inp in self.model.session.get_inputs()]
dummy_inputs = {}
for name in input_names:
if 'text' in name.lower() or 'input' in name.lower():
dummy_inputs[name] = np.zeros((1, 512), dtype=np.int64)
else:
dummy_inputs[name] = np.zeros((1, 256), dtype=np.float32)
self.model.session.run(None, dummy_inputs)
except:
pass
except Exception as e:
print(f"Error processing chunk at index {index}: {e}")
# Generate silence for failed chunks
sample_rate = 24000
silence_duration = 0.5
silence = np.zeros(int(sample_rate * silence_duration))
audio_chunks[index] = silence
completed += 1
progress(completed / total_chunks,
desc=f"Processed {completed}/{total_chunks} {chunk_label}s")
else:
# Process chunks sequentially
for i, chunk in enumerate(chunks):
try:
audio = self.process_single_sentence(chunk, voice, speed)
audio_chunks[i] = audio
progress((i + 1) / total_chunks,
desc=f"Processed {i + 1}/{total_chunks} {chunk_label}s")
# Reset model state after each chunk
if hasattr(self.model, 'session'):
try:
input_names = [inp.name for inp in self.model.session.get_inputs()]
dummy_inputs = {}
for name in input_names:
if 'text' in name.lower() or 'input' in name.lower():
dummy_inputs[name] = np.zeros((1, 512), dtype=np.int64)
else:
dummy_inputs[name] = np.zeros((1, 256), dtype=np.float32)
self.model.session.run(None, dummy_inputs)
except:
pass
except Exception as e:
print(f"Error processing chunk at index {i}: {e}")
# Generate silence for failed chunks
sample_rate = 24000
silence_duration = 0.5
silence = np.zeros(int(sample_rate * silence_duration))
audio_chunks[i] = silence
progress((i + 1) / total_chunks,
desc=f"Processed {i + 1}/{total_chunks} {chunk_label}s")
# Check if we have any None values (shouldn't happen with the error handling)
if any(chunk is None for chunk in audio_chunks):
print("Warning: Some audio chunks were not generated properly")
# Replace any None values with silence
for i, chunk in enumerate(audio_chunks):
if chunk is None:
sample_rate = 24000
silence_duration = 0.5
silence = np.zeros(int(sample_rate * silence_duration))
audio_chunks[i] = silence
progress(0.9, desc="Concatenating audio...")
if len(audio_chunks) == 1:
final_audio = audio_chunks[0]
else:
final_audio = np.concatenate(audio_chunks)
output_file = tempfile.NamedTemporaryFile(suffix='.wav', delete=False)
sf.write(output_file.name, final_audio, 24000)
output_file.close()
progress(1.0, desc="Complete!")
gc.collect()
processing_method = "multithreading" if use_multithreading else "sequential"
chunk_description = f"{chunk_size} sentence(s) per chunk" if chunk_size > 1 else "sentence-by-sentence"
status_message = f"βœ… Successfully converted {total_sentences} sentences ({total_chunks} chunks) using {processing_method} processing with {chunk_description}!"
return output_file.name, status_message
except Exception as e:
raise gr.Error(f"Conversion failed: {str(e)}")
# Initialize the app
print("Initializing KittenTTS app...")
app = KittenTTSGradio()
print("App initialized, model will load on first use")
# Create Gradio interface
def create_interface():
with gr.Blocks(title="KittenTTS - Text to Speech") as demo:
gr.Markdown("""
# πŸŽ™οΈ KittenTTS Text-to-Speech Converter
Convert text to natural-sounding speech using KittenTTS - a lightweight TTS model that runs on CPU.
**Note:** First conversion will download and load the model (~170MB for mini, ~25MB for nano).
If you encounter issues, please try refreshing the page.
""")
with gr.Row():
with gr.Column(scale=2):
text_input = gr.Textbox(
label="Text to Convert",
placeholder="Enter your text here or upload a file...",
lines=10,
max_lines=20,
value=""
)
with gr.Row():
file_upload = gr.File(
label="Or Upload Text File",
file_types=[".txt"],
type="filepath"
)
clear_btn = gr.Button("Clear Text", size="sm")
def load_file(file_path):
if file_path:
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
if len(content) > 50000:
display_text = content[:50000] + "\n\n... (truncated for display)"
else:
display_text = content
return display_text
except Exception as e:
return f"Error loading file: {str(e)}"
return ""
def clear_text():
return ""
file_upload.change(fn=load_file, inputs=[file_upload], outputs=[text_input])
clear_btn.click(fn=clear_text, inputs=[], outputs=[text_input])
with gr.Column(scale=1):
voice_dropdown = gr.Dropdown(
choices=app.available_voices,
value=app.available_voices[0],
label="Voice Selection",
info="Choose the voice for speech synthesis"
)
speed_slider = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
label="Speech Speed",
info="Adjust the speed of speech (1.0 = normal)"
)
chunk_size_slider = gr.Slider(
minimum=1,
maximum=10,
value=1,
step=1,
label="Sentences per Chunk",
info="Group sentences together (1 = best quality, higher = faster processing)"
)
multithread_checkbox = gr.Checkbox(
value=True,
label=f"Enable Multithreading ({app.max_workers} workers)",
info="Process multiple chunks in parallel"
)
convert_btn = gr.Button(
"🎀 Convert to Speech",
variant="primary",
size="lg"
)
with gr.Row():
with gr.Column():
audio_output = gr.Audio(
label="Generated Audio",
type="filepath",
autoplay=False
)
status_output = gr.Markdown(
value="Ready to convert text to speech."
)
gr.Examples(
examples=[
["Hello! This is a test of the KittenTTS system. It can convert text to natural sounding speech."],
["The quick brown fox jumps over the lazy dog. This sentence contains every letter of the alphabet."],
["Welcome to our presentation. Today we'll discuss artificial intelligence. Let's begin with the basics."]
],
inputs=text_input,
label="Example Texts"
)
convert_btn.click(
fn=app.convert_text_to_speech,
inputs=[text_input, voice_dropdown, speed_slider, chunk_size_slider, multithread_checkbox],
outputs=[audio_output, status_output]
)
gr.Markdown("""
---
### βš™οΈ Chunk Size Guide:
- **1 sentence**: Best quality, natural pauses (recommended for short texts)
- **2-3 sentences**: Good balance of speed and quality
- **5+ sentences**: Faster processing for long texts (may sound more continuous)
### 🎭 Available Voices:
- **expr-voice-2-m/f**: Expressive male/female voices
- **expr-voice-3-m/f**: Natural male/female voices
- **expr-voice-4-m/f**: Clear male/female voices
- **expr-voice-5-m/f**: Warm male/female voices
### πŸ“ Notes:
- For best quality with longer texts, use chunk size 1
- The model uses phoneme conversion for more natural speech
- First use will download the model (may take a moment)
""")
return demo
# Create and launch the interface
print("Creating Gradio interface...")
demo = create_interface()
print("Launching app...")
if __name__ == "__main__":
demo.queue(max_size=5)
demo.launch(
share=False,
show_error=True,
server_name="0.0.0.0",
server_port=7860
)