Spaces:
Running
Running
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +255 -37
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,258 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
""
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
| 10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
| 11 |
-
forums](https://discuss.streamlit.io).
|
| 12 |
-
|
| 13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
| 14 |
-
"""
|
| 15 |
-
|
| 16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
| 17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
| 18 |
-
|
| 19 |
-
indices = np.linspace(0, 1, num_points)
|
| 20 |
-
theta = 2 * np.pi * num_turns * indices
|
| 21 |
-
radius = indices
|
| 22 |
-
|
| 23 |
-
x = radius * np.cos(theta)
|
| 24 |
-
y = radius * np.sin(theta)
|
| 25 |
-
|
| 26 |
-
df = pd.DataFrame({
|
| 27 |
-
"x": x,
|
| 28 |
-
"y": y,
|
| 29 |
-
"idx": indices,
|
| 30 |
-
"rand": np.random.randn(num_points),
|
| 31 |
-
})
|
| 32 |
-
|
| 33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
| 34 |
-
.mark_point(filled=True)
|
| 35 |
-
.encode(
|
| 36 |
-
x=alt.X("x", axis=None),
|
| 37 |
-
y=alt.Y("y", axis=None),
|
| 38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
| 39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
| 40 |
-
))
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
from datetime import datetime
|
| 4 |
import pandas as pd
|
| 5 |
import streamlit as st
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from typing import Dict, List, Tuple
|
| 8 |
+
import langdetect
|
| 9 |
+
|
| 10 |
+
# Optional ML imports
|
| 11 |
+
try:
|
| 12 |
+
from transformers import pipeline, Pipeline
|
| 13 |
+
HF_AVAILABLE = True
|
| 14 |
+
except Exception:
|
| 15 |
+
HF_AVAILABLE = False
|
| 16 |
+
|
| 17 |
+
from pydub import AudioSegment
|
| 18 |
+
import altair as alt
|
| 19 |
+
|
| 20 |
+
# -----------------------------------------------------------
|
| 21 |
+
# CONFIGURATION
|
| 22 |
+
# -----------------------------------------------------------
|
| 23 |
+
st.set_page_config(
|
| 24 |
+
page_title="🕵🏻Speech Threat Detection Dashboard",
|
| 25 |
+
layout="wide",
|
| 26 |
+
initial_sidebar_state="expanded",
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
# Styling header
|
| 30 |
+
st.markdown("""
|
| 31 |
+
<style>
|
| 32 |
+
.big-font { font-size:32px; font-weight:700; }
|
| 33 |
+
.muted { color: #9AA0A6; }
|
| 34 |
+
.card { background: linear-gradient(135deg, rgba(10,25,47,0.95), rgba(23,43,77,0.95)); padding: 18px; border-radius: 12px; color: white; box-shadow: 0 6px 30px rgba(8,10,20,0.45); }
|
| 35 |
+
</style>
|
| 36 |
+
""", unsafe_allow_html=True)
|
| 37 |
+
|
| 38 |
+
st.markdown('<div class="card"><span class="big-font">Speech Threat Detection Dashboard</span> <span class="muted"> — upload audio or paste text </span></div>', unsafe_allow_html=True)
|
| 39 |
+
|
| 40 |
+
UPLOAD_DIR = Path("uploads")
|
| 41 |
+
DB_CSV = Path("db.csv")
|
| 42 |
+
UPLOAD_DIR.mkdir(exist_ok=True)
|
| 43 |
+
if not DB_CSV.exists():
|
| 44 |
+
pd.DataFrame(columns=["timestamp","filename","mode","transcription","predicted_label","scores"]).to_csv(DB_CSV, index=False)
|
| 45 |
+
|
| 46 |
+
LABELS = [
|
| 47 |
+
"physical threat",
|
| 48 |
+
"cyber threat",
|
| 49 |
+
"hate speech",
|
| 50 |
+
"political extremist threat",
|
| 51 |
+
"neutral"
|
| 52 |
+
]
|
| 53 |
+
|
| 54 |
+
LABEL_MAP = {
|
| 55 |
+
"LABEL_0": "hate speech",
|
| 56 |
+
"LABEL_1": "self-harm",
|
| 57 |
+
"LABEL_2": "cyber threat",
|
| 58 |
+
"LABEL_3": "neutral / daily life",
|
| 59 |
+
"LABEL_4": "physical threat",
|
| 60 |
+
"LABEL_5": "political extremist threat"
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
# -----------------------------------------------------------
|
| 64 |
+
# HELPER FUNCTIONS
|
| 65 |
+
# -----------------------------------------------------------
|
| 66 |
+
def save_audio_file(uploaded_file) -> Path:
|
| 67 |
+
filename = f"{int(time.time())}_{uploaded_file.name}"
|
| 68 |
+
out_path = UPLOAD_DIR / filename
|
| 69 |
+
with open(out_path, "wb") as f:
|
| 70 |
+
f.write(uploaded_file.read())
|
| 71 |
+
return out_path
|
| 72 |
+
|
| 73 |
+
def normalize_audio_to_wav(path: Path) -> Path:
|
| 74 |
+
sound = AudioSegment.from_file(path)
|
| 75 |
+
sound = sound.set_frame_rate(16000).set_channels(1).set_sample_width(2)
|
| 76 |
+
wav_path = path.with_suffix(".wav")
|
| 77 |
+
sound.export(wav_path, format="wav")
|
| 78 |
+
return wav_path
|
| 79 |
+
|
| 80 |
+
@st.cache_resource(show_spinner=False)
|
| 81 |
+
def get_asr_pipeline() -> Tuple[str, "Pipeline"]:
|
| 82 |
+
"""Load Hugging Face Whisper ASR model"""
|
| 83 |
+
asr = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2")
|
| 84 |
+
return ("hf", asr)
|
| 85 |
+
|
| 86 |
+
def hf_transcribe_with_pipeline(asr_pipeline_tuple, path: Path, lang_choice: str = "Auto") -> str:
|
| 87 |
+
"""Transcribe audio with Whisper and restrict to English/Urdu"""
|
| 88 |
+
asr_pipeline = asr_pipeline_tuple[1] # Extract the pipeline from the tuple
|
| 89 |
+
|
| 90 |
+
lang_token = None
|
| 91 |
+
if lang_choice == "English only":
|
| 92 |
+
lang_token = "<|en|>"
|
| 93 |
+
elif lang_choice == "Urdu only":
|
| 94 |
+
lang_token = "<|ur|>"
|
| 95 |
+
|
| 96 |
+
kwargs = {"generate_kwargs": {"language": lang_token}} if lang_token else {}
|
| 97 |
+
output = asr_pipeline(str(path), **kwargs)
|
| 98 |
+
text = output["text"].strip() if isinstance(output, dict) else str(output).strip()
|
| 99 |
+
|
| 100 |
+
# Restrict to English or Urdu only
|
| 101 |
+
try:
|
| 102 |
+
detected = langdetect.detect(text)
|
| 103 |
+
if detected not in ["en", "ur"]:
|
| 104 |
+
return "[❌ Unsupported language detected — please use Urdu or English.]"
|
| 105 |
+
except Exception:
|
| 106 |
+
pass
|
| 107 |
+
|
| 108 |
+
return text
|
| 109 |
+
|
| 110 |
+
def classify_text(text: str, classifier: Pipeline, labels: List[str]) -> Dict:
|
| 111 |
+
try:
|
| 112 |
+
result = classifier(text, labels, multi_label=False, hypothesis_template="This text is about {}.")
|
| 113 |
+
labels_out, scores_out = result["labels"], result["scores"]
|
| 114 |
+
top_label = labels_out[scores_out.index(max(scores_out))]
|
| 115 |
+
return {"label": top_label, "scores": dict(zip(labels_out, scores_out))}
|
| 116 |
+
except Exception as e:
|
| 117 |
+
st.error(f"Classification failed: {e}")
|
| 118 |
+
return {"label": "neutral", "scores": {}}
|
| 119 |
+
|
| 120 |
+
def log_to_db(record: Dict):
|
| 121 |
+
df = pd.read_csv(DB_CSV)
|
| 122 |
+
df = pd.concat([df, pd.DataFrame([record])], ignore_index=True)
|
| 123 |
+
df.to_csv(DB_CSV, index=False)
|
| 124 |
+
|
| 125 |
+
# -----------------------------------------------------------
|
| 126 |
+
# SIDEBAR CONFIGURATION
|
| 127 |
+
# -----------------------------------------------------------
|
| 128 |
+
st.sidebar.title("⚙️ Configuration")
|
| 129 |
+
|
| 130 |
+
asr_pipeline_tuple = get_asr_pipeline()
|
| 131 |
+
|
| 132 |
+
asr_language = st.sidebar.selectbox(
|
| 133 |
+
"Transcription Language Restriction",
|
| 134 |
+
["Auto", "English only", "Urdu only"],
|
| 135 |
+
help="Restrict transcription to English or Urdu only"
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
if asr_pipeline_tuple[0] == "hf":
|
| 139 |
+
st.sidebar.markdown("**ASR Method:** `hf`")
|
| 140 |
+
else:
|
| 141 |
+
st.sidebar.markdown("**ASR Method:** `none` (Hugging Face models not available)")
|
| 142 |
+
|
| 143 |
+
# Only zero-shot models remain
|
| 144 |
+
model_choices = {
|
| 145 |
+
"✔Pretrained-RoBERTa": "roberta-large-mnli",
|
| 146 |
+
"✔Pretrained-MultiClassification": "facebook/bart-large-mnli",
|
| 147 |
+
"✔XLM-R": "joeddav/xlm-roberta-large-xnli"
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
model_display = st.sidebar.selectbox("Choose a Model", list(model_choices.keys()))
|
| 151 |
+
model_path = model_choices[model_display]
|
| 152 |
+
|
| 153 |
+
with st.sidebar:
|
| 154 |
+
st.markdown("---")
|
| 155 |
+
st.markdown("**Active Labels:**")
|
| 156 |
+
for lbl in LABELS:
|
| 157 |
+
st.markdown(f"- {lbl}")
|
| 158 |
+
|
| 159 |
+
# Load classifier
|
| 160 |
+
with st.spinner("Loading model..."):
|
| 161 |
+
try:
|
| 162 |
+
classifier = pipeline("zero-shot-classification", model=model_path)
|
| 163 |
+
except Exception as e:
|
| 164 |
+
st.error(f"Model load failed: {e}")
|
| 165 |
+
st.stop()
|
| 166 |
+
|
| 167 |
+
# -----------------------------------------------------------
|
| 168 |
+
# MAIN INTERFACE
|
| 169 |
+
# -----------------------------------------------------------
|
| 170 |
+
st.markdown("""
|
| 171 |
+
<style>
|
| 172 |
+
.subtitle {color:#999;}
|
| 173 |
+
</style>
|
| 174 |
+
""", unsafe_allow_html=True)
|
| 175 |
+
|
| 176 |
+
st.markdown('<div class="subtitle">Upload or enter text to detect threat categories</div>', unsafe_allow_html=True)
|
| 177 |
+
st.write("")
|
| 178 |
+
|
| 179 |
+
tab1, tab2 = st.tabs(["⏳ Processing", "📊 Analysis"])
|
| 180 |
+
|
| 181 |
+
# -----------------------------------------------------------
|
| 182 |
+
# TAB 1: PROCESSING
|
| 183 |
+
# -----------------------------------------------------------
|
| 184 |
+
with tab1:
|
| 185 |
+
input_mode = st.radio("Input mode", ["Upload audio", "Paste text"])
|
| 186 |
+
transcription_text = ""
|
| 187 |
+
saved_file_path = None
|
| 188 |
+
|
| 189 |
+
if input_mode == "Upload audio":
|
| 190 |
+
uploaded_file = st.file_uploader("Upload audio file", type=["wav","mp3","m4a","flac","ogg"])
|
| 191 |
+
if uploaded_file:
|
| 192 |
+
saved_path = save_audio_file(uploaded_file)
|
| 193 |
+
saved_file_path = saved_path
|
| 194 |
+
st.audio(saved_path)
|
| 195 |
+
wav_path = normalize_audio_to_wav(saved_path)
|
| 196 |
+
st.info("Transcribing audio...")
|
| 197 |
+
try:
|
| 198 |
+
transcription_text = hf_transcribe_with_pipeline(asr_pipeline_tuple, wav_path, asr_language)
|
| 199 |
+
except Exception as e:
|
| 200 |
+
st.error(f"Transcription failed: {e}")
|
| 201 |
+
else:
|
| 202 |
+
transcription_text = st.text_area("Enter or paste text", height=180)
|
| 203 |
+
|
| 204 |
+
if transcription_text:
|
| 205 |
+
st.markdown("### Transcription")
|
| 206 |
+
txt = st.text_area("Editable text", value=transcription_text, height=180)
|
| 207 |
+
if st.button("📝 Classify"):
|
| 208 |
+
with st.spinner("Analyzing text..."):
|
| 209 |
+
result = classify_text(txt, classifier, LABELS)
|
| 210 |
+
record = {
|
| 211 |
+
"timestamp": datetime.utcnow().isoformat(),
|
| 212 |
+
"filename": saved_file_path.name if saved_file_path else "text_input",
|
| 213 |
+
"mode": "audio" if saved_file_path else "text",
|
| 214 |
+
"transcription": txt,
|
| 215 |
+
"predicted_label": result["label"],
|
| 216 |
+
"scores": result["scores"]
|
| 217 |
+
}
|
| 218 |
+
log_to_db(record)
|
| 219 |
+
st.success(f"**Predicted Category:** {result['label']}")
|
| 220 |
+
df_scores = pd.DataFrame(result["scores"].items(), columns=["Label", "Score"]).sort_values("Score", ascending=False)
|
| 221 |
+
st.bar_chart(df_scores.set_index("Label"))
|
| 222 |
+
|
| 223 |
+
# -----------------------------------------------------------
|
| 224 |
+
# TAB 2: ANALYSIS
|
| 225 |
+
# -----------------------------------------------------------
|
| 226 |
+
with tab2:
|
| 227 |
+
st.subheader("📈📊 Analytical Overview")
|
| 228 |
+
if not DB_CSV.exists() or os.path.getsize(DB_CSV) == 0:
|
| 229 |
+
st.info("No data available yet. Run a few classifications first.")
|
| 230 |
+
else:
|
| 231 |
+
df = pd.read_csv(DB_CSV)
|
| 232 |
+
if df.empty:
|
| 233 |
+
st.info("No records yet.")
|
| 234 |
+
else:
|
| 235 |
+
st.metric("Total Records", len(df))
|
| 236 |
+
cat_counts = df["predicted_label"].value_counts().reset_index()
|
| 237 |
+
cat_counts.columns = ["Label", "Count"]
|
| 238 |
+
chart = alt.Chart(cat_counts).mark_bar().encode(
|
| 239 |
+
x="Label:N", y="Count:Q", tooltip=["Label", "Count"]
|
| 240 |
+
).properties(height=300)
|
| 241 |
+
st.altair_chart(chart, use_container_width=True)
|
| 242 |
+
|
| 243 |
+
st.markdown("### Recent Entries")
|
| 244 |
+
st.dataframe(df.sort_values("timestamp", ascending=False).head(30))
|
| 245 |
+
|
| 246 |
+
st.markdown("### Upload Trends Over Time")
|
| 247 |
+
df["ts_day"] = pd.to_datetime(df["timestamp"], errors="coerce").dt.date
|
| 248 |
+
ts = df.groupby(["ts_day","predicted_label"]).size().reset_index(name="count")
|
| 249 |
+
line_chart = alt.Chart(ts).mark_line(point=True).encode(
|
| 250 |
+
x="ts_day:T", y="count:Q", color="predicted_label:N"
|
| 251 |
+
).properties(height=300)
|
| 252 |
+
st.altair_chart(line_chart, use_container_width=True)
|
| 253 |
+
|
| 254 |
+
csv = df.to_csv(index=False).encode("utf-8")
|
| 255 |
+
st.download_button("⬇️ Download Full Log", csv, "threat_log.csv", "text/csv")
|
| 256 |
|
| 257 |
+
st.markdown("---")
|
| 258 |
+
st.caption("© 2025 — Intelligence Threat Detection Suite. Built for multilingual zero-shot NLP analysis.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|