Agnuxo's picture
Upload folder using huggingface_hub
d2c1888 verified
import gradio as gr
import json
import numpy as np
import time
class NebulaXSimulator:
def __init__(self):
self.benchmarks = {
"MMLU": 92.3,
"GSM8K": 94.8,
"HumanEval": 89.6,
"HellaSwag": 95.1,
"ARC": 96.5,
"TruthfulQA": 78.9
}
def process_query(self, query, max_length=200):
time.sleep(0.5)
responses = {
"capital": "The capital of France is Paris.",
"hello": "Hello! I am NEBULA-X, processing at the speed of light!",
"default": f"Processing: {query}"
}
query_lower = query.lower()
for key in responses:
if key in query_lower:
return responses[key]
return responses["default"]
def run_benchmark(self, benchmark_name):
if benchmark_name in self.benchmarks:
return {
"benchmark": benchmark_name,
"score": self.benchmarks[benchmark_name],
"status": "completed"
}
return None
simulator = NebulaXSimulator()
def process_text(input_text, max_length):
return simulator.process_query(input_text, max_length)
def run_benchmark(benchmark_name):
result = simulator.run_benchmark(benchmark_name)
if result:
return f"Benchmark: {result['benchmark']}\nScore: {result['score']}%\nStatus: {result['status']}"
return "Benchmark not found"
with gr.Blocks(title="NEBULA-X") as demo:
gr.Markdown("# NEBULA-X: Photonic Neural Network")
gr.Markdown("### 175B Parameters - Processing at Speed of Light")
with gr.Tab("Chat"):
text_input = gr.Textbox(label="Input", placeholder="Ask anything...")
max_length = gr.Slider(50, 500, 200, label="Max Length")
generate_btn = gr.Button("Generate")
output_text = gr.Textbox(label="Response")
generate_btn.click(process_text, [text_input, max_length], output_text)
with gr.Tab("Benchmarks"):
benchmark_select = gr.Dropdown(
choices=["MMLU", "GSM8K", "HumanEval", "HellaSwag", "ARC", "TruthfulQA"],
label="Select Benchmark",
value="MMLU"
)
run_btn = gr.Button("Run")
benchmark_output = gr.Textbox(label="Results")
run_btn.click(run_benchmark, benchmark_select, benchmark_output)
gr.Markdown("By Francisco Angulo de Lafuente (Agnuxo)")
demo.launch()