Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,502 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import matplotlib.patches as patches
|
| 5 |
+
from matplotlib.animation import FuncAnimation
|
| 6 |
+
import networkx as nx
|
| 7 |
+
import time
|
| 8 |
+
import random
|
| 9 |
+
import json
|
| 10 |
+
from datetime import datetime
|
| 11 |
+
import threading
|
| 12 |
+
import queue
|
| 13 |
+
|
| 14 |
+
class Neuron:
|
| 15 |
+
def __init__(self, neuron_id, x, y, z=0):
|
| 16 |
+
self.id = neuron_id
|
| 17 |
+
self.x = x
|
| 18 |
+
self.y = y
|
| 19 |
+
self.z = z
|
| 20 |
+
self.activation = random.random() * 0.1
|
| 21 |
+
self.specialization = random.choice([
|
| 22 |
+
"visual", "semantic", "temporal", "spatial", "abstract",
|
| 23 |
+
"linguistic", "logical", "creative", "memory", "learning"
|
| 24 |
+
])
|
| 25 |
+
self.knowledge = set()
|
| 26 |
+
self.connections = []
|
| 27 |
+
self.quantum_state = [random.random() for _ in range(4)]
|
| 28 |
+
self.learning_rate = 0.1 + random.random() * 0.9
|
| 29 |
+
self.age = 0
|
| 30 |
+
self.experience = 0
|
| 31 |
+
self.fitness = 0
|
| 32 |
+
self.energy = random.random()
|
| 33 |
+
self.bias = random.uniform(-0.1, 0.1)
|
| 34 |
+
self.weights = {}
|
| 35 |
+
self.memory = []
|
| 36 |
+
|
| 37 |
+
class AdvancedNeuralNetwork:
|
| 38 |
+
def __init__(self):
|
| 39 |
+
self.neurons = []
|
| 40 |
+
self.connections = []
|
| 41 |
+
self.metrics = {
|
| 42 |
+
'loss': 1.0,
|
| 43 |
+
'efficiency': 0,
|
| 44 |
+
'convergence': 0,
|
| 45 |
+
'global_fitness': 0,
|
| 46 |
+
'learning_rate': 0.1,
|
| 47 |
+
'knowledge_growth': 0,
|
| 48 |
+
'reasoning_capability': 0
|
| 49 |
+
}
|
| 50 |
+
self.specializations = [
|
| 51 |
+
"visual", "semantic", "temporal", "spatial", "abstract",
|
| 52 |
+
"linguistic", "logical", "creative", "memory", "learning"
|
| 53 |
+
]
|
| 54 |
+
self.initialize_network()
|
| 55 |
+
|
| 56 |
+
def initialize_network(self, num_neurons=30):
|
| 57 |
+
"""Inicializar la red neuronal con neuronas distribuidas"""
|
| 58 |
+
self.neurons = []
|
| 59 |
+
self.connections = []
|
| 60 |
+
|
| 61 |
+
# Crear neuronas especializadas
|
| 62 |
+
for i in range(num_neurons):
|
| 63 |
+
x = random.uniform(0.1, 0.9)
|
| 64 |
+
y = random.uniform(0.1, 0.9)
|
| 65 |
+
neuron = Neuron(i, x, y)
|
| 66 |
+
self.neurons.append(neuron)
|
| 67 |
+
|
| 68 |
+
# Crear conexiones iniciales
|
| 69 |
+
self.create_initial_connections()
|
| 70 |
+
|
| 71 |
+
def create_initial_connections(self):
|
| 72 |
+
"""Crear conexiones iniciales entre neuronas"""
|
| 73 |
+
for i, neuron1 in enumerate(self.neurons):
|
| 74 |
+
for j, neuron2 in enumerate(self.neurons[i+1:], i+1):
|
| 75 |
+
distance = self.calculate_distance(neuron1, neuron2)
|
| 76 |
+
if distance < 0.3 and random.random() < 0.3:
|
| 77 |
+
weight = random.random()
|
| 78 |
+
neuron1.connections.append(j)
|
| 79 |
+
neuron2.connections.append(i)
|
| 80 |
+
neuron1.weights[j] = weight
|
| 81 |
+
neuron2.weights[i] = weight
|
| 82 |
+
self.connections.append({'from': i, 'to': j, 'weight': weight})
|
| 83 |
+
|
| 84 |
+
def calculate_distance(self, neuron1, neuron2):
|
| 85 |
+
"""Calcular distancia euclidiana entre dos neuronas"""
|
| 86 |
+
dx = neuron1.x - neuron2.x
|
| 87 |
+
dy = neuron1.y - neuron2.y
|
| 88 |
+
dz = neuron1.z - neuron2.z
|
| 89 |
+
return np.sqrt(dx*dx + dy*dy + dz*dz)
|
| 90 |
+
|
| 91 |
+
def sigmoid(self, x):
|
| 92 |
+
"""Función de activación sigmoid"""
|
| 93 |
+
return 1 / (1 + np.exp(-np.clip(x, -500, 500)))
|
| 94 |
+
|
| 95 |
+
def step(self):
|
| 96 |
+
"""Ejecutar un paso de la simulación"""
|
| 97 |
+
# Actualizar activaciones
|
| 98 |
+
new_activations = []
|
| 99 |
+
|
| 100 |
+
for j, neuron in enumerate(self.neurons):
|
| 101 |
+
input_sum = 0
|
| 102 |
+
for i, source_neuron in enumerate(self.neurons):
|
| 103 |
+
if i == j:
|
| 104 |
+
continue
|
| 105 |
+
weight = source_neuron.weights.get(j, 0)
|
| 106 |
+
distance = self.calculate_distance(source_neuron, neuron)
|
| 107 |
+
attenuation = 1 / (1 + distance * 5)
|
| 108 |
+
input_sum += source_neuron.activation * weight * attenuation
|
| 109 |
+
|
| 110 |
+
# Influencia cuántica
|
| 111 |
+
quantum_influence = (neuron.quantum_state[0] - 0.5) * 0.8
|
| 112 |
+
new_activation = self.sigmoid(input_sum + neuron.bias + quantum_influence)
|
| 113 |
+
new_activations.append(new_activation)
|
| 114 |
+
|
| 115 |
+
# Aplicar nuevas activaciones con decay
|
| 116 |
+
for i, neuron in enumerate(self.neurons):
|
| 117 |
+
neuron.activation = new_activations[i] * 0.96
|
| 118 |
+
neuron.energy = neuron.activation
|
| 119 |
+
neuron.age += 0.01
|
| 120 |
+
neuron.experience += neuron.activation * 0.1
|
| 121 |
+
|
| 122 |
+
# Actualizar estado cuántico
|
| 123 |
+
for j in range(4):
|
| 124 |
+
neuron.quantum_state[j] = np.sin(time.time() * 0.001 + j) * neuron.activation
|
| 125 |
+
|
| 126 |
+
# Aprendizaje hebbiano
|
| 127 |
+
self.hebbian_learning()
|
| 128 |
+
|
| 129 |
+
# Actualizar métricas
|
| 130 |
+
self.update_metrics()
|
| 131 |
+
|
| 132 |
+
def hebbian_learning(self):
|
| 133 |
+
"""Aplicar aprendizaje hebbiano"""
|
| 134 |
+
learning_rate = self.metrics['learning_rate'] * 0.01
|
| 135 |
+
|
| 136 |
+
for neuron in self.neurons:
|
| 137 |
+
for connected_id in neuron.connections:
|
| 138 |
+
if connected_id < len(self.neurons):
|
| 139 |
+
connected_neuron = self.neurons[connected_id]
|
| 140 |
+
delta = learning_rate * neuron.activation * connected_neuron.activation
|
| 141 |
+
current_weight = neuron.weights.get(connected_id, 0)
|
| 142 |
+
neuron.weights[connected_id] = max(0, min(4, current_weight * 0.999 + delta))
|
| 143 |
+
|
| 144 |
+
def update_metrics(self):
|
| 145 |
+
"""Actualizar métricas de la red"""
|
| 146 |
+
active_neurons = sum(1 for n in self.neurons if n.activation > 0.1)
|
| 147 |
+
total_knowledge = sum(len(n.knowledge) for n in self.neurons)
|
| 148 |
+
total_energy = sum(n.activation for n in self.neurons)
|
| 149 |
+
max_energy = len(self.neurons)
|
| 150 |
+
|
| 151 |
+
self.metrics['efficiency'] = active_neurons / len(self.neurons) if self.neurons else 0
|
| 152 |
+
self.metrics['knowledge_growth'] = total_knowledge
|
| 153 |
+
self.metrics['global_fitness'] = total_energy / max_energy if max_energy > 0 else 0
|
| 154 |
+
self.metrics['convergence'] = min(self.metrics['efficiency'] * self.metrics['global_fitness'], 1)
|
| 155 |
+
self.metrics['reasoning_capability'] = len([n for n in self.neurons
|
| 156 |
+
if n.specialization == "logical" and n.activation > 0.3]) / 10
|
| 157 |
+
|
| 158 |
+
def add_neuron(self):
|
| 159 |
+
"""Añadir una nueva neurona a la red"""
|
| 160 |
+
new_id = len(self.neurons)
|
| 161 |
+
x = random.uniform(0.1, 0.9)
|
| 162 |
+
y = random.uniform(0.1, 0.9)
|
| 163 |
+
new_neuron = Neuron(new_id, x, y)
|
| 164 |
+
|
| 165 |
+
# Conectar con neuronas cercanas
|
| 166 |
+
for existing_neuron in self.neurons:
|
| 167 |
+
distance = self.calculate_distance(new_neuron, existing_neuron)
|
| 168 |
+
if distance < 0.3:
|
| 169 |
+
weight = np.exp(-distance / 0.4) * (0.5 + random.random() * 0.9)
|
| 170 |
+
new_neuron.weights[existing_neuron.id] = weight
|
| 171 |
+
existing_neuron.weights[new_id] = weight
|
| 172 |
+
new_neuron.connections.append(existing_neuron.id)
|
| 173 |
+
existing_neuron.connections.append(new_id)
|
| 174 |
+
|
| 175 |
+
self.neurons.append(new_neuron)
|
| 176 |
+
|
| 177 |
+
def remove_neuron(self):
|
| 178 |
+
"""Eliminar una neurona de la red"""
|
| 179 |
+
if len(self.neurons) <= 5:
|
| 180 |
+
return
|
| 181 |
+
|
| 182 |
+
removed = self.neurons.pop()
|
| 183 |
+
# Limpiar conexiones
|
| 184 |
+
for neuron in self.neurons:
|
| 185 |
+
if removed.id in neuron.weights:
|
| 186 |
+
del neuron.weights[removed.id]
|
| 187 |
+
if removed.id in neuron.connections:
|
| 188 |
+
neuron.connections.remove(removed.id)
|
| 189 |
+
|
| 190 |
+
# Actualizar conexiones
|
| 191 |
+
self.connections = [conn for conn in self.connections
|
| 192 |
+
if conn['from'] != removed.id and conn['to'] != removed.id]
|
| 193 |
+
|
| 194 |
+
def teach_concept(self, concept):
|
| 195 |
+
"""Enseñar un concepto a la red"""
|
| 196 |
+
learning_neurons = [n for n in self.neurons if n.specialization == "learning"]
|
| 197 |
+
if learning_neurons:
|
| 198 |
+
best_learner = max(learning_neurons, key=lambda n: n.activation)
|
| 199 |
+
best_learner.knowledge.add(concept)
|
| 200 |
+
best_learner.activation += 0.5
|
| 201 |
+
best_learner.memory.append({
|
| 202 |
+
'pattern': concept,
|
| 203 |
+
'timestamp': time.time(),
|
| 204 |
+
'strength': 1.0
|
| 205 |
+
})
|
| 206 |
+
|
| 207 |
+
# Propagar conocimiento
|
| 208 |
+
for connected_id in best_learner.connections:
|
| 209 |
+
if connected_id < len(self.neurons) and random.random() < 0.3:
|
| 210 |
+
connected_neuron = self.neurons[connected_id]
|
| 211 |
+
connected_neuron.knowledge.add(concept)
|
| 212 |
+
connected_neuron.activation += 0.2
|
| 213 |
+
|
| 214 |
+
def reset(self):
|
| 215 |
+
"""Reiniciar la red neuronal"""
|
| 216 |
+
self.initialize_network()
|
| 217 |
+
|
| 218 |
+
# Instancia global de la red neuronal
|
| 219 |
+
global_network = AdvancedNeuralNetwork()
|
| 220 |
+
|
| 221 |
+
def create_network_visualization():
|
| 222 |
+
"""Crear visualización de la red neuronal"""
|
| 223 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
| 224 |
+
ax.set_xlim(0, 1)
|
| 225 |
+
ax.set_ylim(0, 1)
|
| 226 |
+
ax.set_aspect('equal')
|
| 227 |
+
ax.set_facecolor('#0f172a')
|
| 228 |
+
fig.patch.set_facecolor('#0f172a')
|
| 229 |
+
|
| 230 |
+
# Colores por especialización
|
| 231 |
+
colors = {
|
| 232 |
+
'visual': '#ef4444', 'semantic': '#22c55e', 'temporal': '#3b82f6',
|
| 233 |
+
'spatial': '#eab308', 'abstract': '#a855f7', 'linguistic': '#06b6d4',
|
| 234 |
+
'logical': '#f97316', 'creative': '#84cc16', 'memory': '#f59e0b',
|
| 235 |
+
'learning': '#ec4899'
|
| 236 |
+
}
|
| 237 |
+
|
| 238 |
+
# Dibujar conexiones
|
| 239 |
+
for conn in global_network.connections:
|
| 240 |
+
from_neuron = global_network.neurons[conn['from']]
|
| 241 |
+
to_neuron = global_network.neurons[conn['to']]
|
| 242 |
+
ax.plot([from_neuron.x, to_neuron.x], [from_neuron.y, to_neuron.y],
|
| 243 |
+
'b-', alpha=0.3, linewidth=0.5)
|
| 244 |
+
|
| 245 |
+
# Dibujar neuronas
|
| 246 |
+
for neuron in global_network.neurons:
|
| 247 |
+
size = 50 + neuron.activation * 300
|
| 248 |
+
color = colors.get(neuron.specialization, '#ffffff')
|
| 249 |
+
alpha = 0.3 + neuron.activation * 0.7
|
| 250 |
+
|
| 251 |
+
circle = plt.Circle((neuron.x, neuron.y), 0.02,
|
| 252 |
+
color=color, alpha=alpha, zorder=10)
|
| 253 |
+
ax.add_patch(circle)
|
| 254 |
+
|
| 255 |
+
# Mostrar ID para neuronas muy activas
|
| 256 |
+
if neuron.activation > 0.7:
|
| 257 |
+
ax.text(neuron.x, neuron.y + 0.03, str(neuron.id),
|
| 258 |
+
ha='center', va='bottom', color='white', fontsize=8)
|
| 259 |
+
|
| 260 |
+
# Efecto de conocimiento
|
| 261 |
+
if neuron.knowledge:
|
| 262 |
+
knowledge_circle = plt.Circle((neuron.x, neuron.y), 0.025,
|
| 263 |
+
fill=False, edgecolor='#22c55e',
|
| 264 |
+
linewidth=2, alpha=0.6, zorder=11)
|
| 265 |
+
ax.add_patch(knowledge_circle)
|
| 266 |
+
|
| 267 |
+
ax.set_title('Red Neuronal IA Avanzada - Visualización en Tiempo Real',
|
| 268 |
+
color='white', fontsize=16, pad=20)
|
| 269 |
+
ax.set_xlabel('')
|
| 270 |
+
ax.set_ylabel('')
|
| 271 |
+
ax.tick_params(colors='white')
|
| 272 |
+
|
| 273 |
+
# Leyenda
|
| 274 |
+
legend_elements = []
|
| 275 |
+
for spec, color in colors.items():
|
| 276 |
+
legend_elements.append(plt.Line2D([0], [0], marker='o', color='w',
|
| 277 |
+
markerfacecolor=color, markersize=8,
|
| 278 |
+
label=spec.capitalize()))
|
| 279 |
+
|
| 280 |
+
ax.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(1, 1),
|
| 281 |
+
facecolor='#1e293b', edgecolor='#475569', labelcolor='white')
|
| 282 |
+
|
| 283 |
+
plt.tight_layout()
|
| 284 |
+
return fig
|
| 285 |
+
|
| 286 |
+
def step_simulation():
|
| 287 |
+
"""Ejecutar un paso de la simulación"""
|
| 288 |
+
global_network.step()
|
| 289 |
+
return create_network_visualization(), get_metrics_display()
|
| 290 |
+
|
| 291 |
+
def get_metrics_display():
|
| 292 |
+
"""Obtener display de métricas"""
|
| 293 |
+
metrics = global_network.metrics
|
| 294 |
+
return f"""
|
| 295 |
+
## 📊 Métricas de la Red Neuronal
|
| 296 |
+
|
| 297 |
+
- **Eficiencia**: {metrics['efficiency']:.1%}
|
| 298 |
+
- **Convergencia**: {metrics['convergence']:.1%}
|
| 299 |
+
- **Fitness Global**: {metrics['global_fitness']:.1%}
|
| 300 |
+
- **Neuronas**: {len(global_network.neurons)}
|
| 301 |
+
- **Conexiones**: {len(global_network.connections)}
|
| 302 |
+
- **Conocimiento Total**: {metrics['knowledge_growth']}
|
| 303 |
+
- **Capacidad de Razonamiento**: {metrics['reasoning_capability']:.1%}
|
| 304 |
+
"""
|
| 305 |
+
|
| 306 |
+
def teach_concept_to_network(concept):
|
| 307 |
+
"""Enseñar concepto a la red"""
|
| 308 |
+
if concept.strip():
|
| 309 |
+
global_network.teach_concept(concept.strip())
|
| 310 |
+
return (create_network_visualization(),
|
| 311 |
+
get_metrics_display(),
|
| 312 |
+
f"✅ Concepto '{concept}' enseñado exitosamente a la red",
|
| 313 |
+
"")
|
| 314 |
+
return create_network_visualization(), get_metrics_display(), "❌ Por favor ingresa un concepto válido", concept
|
| 315 |
+
|
| 316 |
+
def add_neuron_to_network():
|
| 317 |
+
"""Añadir neurona a la red"""
|
| 318 |
+
global_network.add_neuron()
|
| 319 |
+
return create_network_visualization(), get_metrics_display(), "➕ Nueva neurona añadida"
|
| 320 |
+
|
| 321 |
+
def remove_neuron_from_network():
|
| 322 |
+
"""Remover neurona de la red"""
|
| 323 |
+
global_network.remove_neuron()
|
| 324 |
+
return create_network_visualization(), get_metrics_display(), "➖ Neurona eliminada"
|
| 325 |
+
|
| 326 |
+
def reset_network():
|
| 327 |
+
"""Reiniciar la red"""
|
| 328 |
+
global_network.reset()
|
| 329 |
+
return create_network_visualization(), get_metrics_display(), "🔄 Red neuronal reiniciada"
|
| 330 |
+
|
| 331 |
+
def auto_simulation_steps():
|
| 332 |
+
"""Ejecutar múltiples pasos automáticamente"""
|
| 333 |
+
for _ in range(5):
|
| 334 |
+
global_network.step()
|
| 335 |
+
time.sleep(0.1)
|
| 336 |
+
return create_network_visualization(), get_metrics_display()
|
| 337 |
+
|
| 338 |
+
# Crear la interfaz Gradio
|
| 339 |
+
def create_gradio_interface():
|
| 340 |
+
with gr.Blocks(
|
| 341 |
+
theme=gr.themes.Soft(
|
| 342 |
+
primary_hue="blue",
|
| 343 |
+
secondary_hue="slate",
|
| 344 |
+
neutral_hue="slate",
|
| 345 |
+
).set(
|
| 346 |
+
body_background_fill="#0f172a",
|
| 347 |
+
block_background_fill="#1e293b",
|
| 348 |
+
block_border_color="#475569",
|
| 349 |
+
input_background_fill="#334155",
|
| 350 |
+
button_primary_background_fill="#3b82f6",
|
| 351 |
+
button_primary_text_color="white",
|
| 352 |
+
),
|
| 353 |
+
css="""
|
| 354 |
+
.gradio-container {
|
| 355 |
+
background: linear-gradient(135deg, #0f172a 0%, #1e3a8a 50%, #0f172a 100%);
|
| 356 |
+
min-height: 100vh;
|
| 357 |
+
}
|
| 358 |
+
.gr-button {
|
| 359 |
+
border-radius: 8px;
|
| 360 |
+
font-weight: 600;
|
| 361 |
+
}
|
| 362 |
+
.gr-panel {
|
| 363 |
+
border-radius: 12px;
|
| 364 |
+
border: 1px solid #475569;
|
| 365 |
+
}
|
| 366 |
+
""",
|
| 367 |
+
title="🧠 NEBULA - Red Neuronal IA Avanzada"
|
| 368 |
+
) as iface:
|
| 369 |
+
|
| 370 |
+
gr.HTML("""
|
| 371 |
+
<div style="text-align: center; padding: 20px;">
|
| 372 |
+
<h1 style="color: white; font-size: 3rem; margin-bottom: 10px;">
|
| 373 |
+
🧠 NEBULA - Red Neuronal IA Avanzada ⚡
|
| 374 |
+
</h1>
|
| 375 |
+
<p style="color: #cbd5e1; font-size: 1.2rem;">
|
| 376 |
+
Simulación interactiva con aprendizaje automático y supervisión por IA
|
| 377 |
+
</p>
|
| 378 |
+
<p style="color: #94a3b8; font-size: 1rem; margin-top: 10px;">
|
| 379 |
+
Una demostración avanzada de redes neuronales con especialización funcional y aprendizaje adaptativo
|
| 380 |
+
</p>
|
| 381 |
+
</div>
|
| 382 |
+
""")
|
| 383 |
+
|
| 384 |
+
with gr.Row():
|
| 385 |
+
with gr.Column(scale=2):
|
| 386 |
+
plot_output = gr.Plot(
|
| 387 |
+
value=create_network_visualization(),
|
| 388 |
+
label="🌐 Visualización de Red Neuronal",
|
| 389 |
+
show_label=True
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
with gr.Row():
|
| 393 |
+
step_btn = gr.Button("🔄 Paso Manual", variant="primary")
|
| 394 |
+
auto_btn = gr.Button("⚡ 5 Pasos Auto", variant="secondary")
|
| 395 |
+
reset_btn = gr.Button("🔄 Reiniciar", variant="stop")
|
| 396 |
+
|
| 397 |
+
with gr.Row():
|
| 398 |
+
add_neuron_btn = gr.Button("➕ Añadir Neurona")
|
| 399 |
+
remove_neuron_btn = gr.Button("➖ Remover Neurona")
|
| 400 |
+
|
| 401 |
+
with gr.Column(scale=1):
|
| 402 |
+
metrics_display = gr.Markdown(
|
| 403 |
+
value=get_metrics_display(),
|
| 404 |
+
label="📊 Métricas en Tiempo Real"
|
| 405 |
+
)
|
| 406 |
+
|
| 407 |
+
with gr.Group():
|
| 408 |
+
gr.HTML("<h3 style='color: white; text-align: center;'>📚 Enseñanza Manual</h3>")
|
| 409 |
+
concept_input = gr.Textbox(
|
| 410 |
+
placeholder="Enseña un concepto a la red...",
|
| 411 |
+
label="💡 Concepto",
|
| 412 |
+
lines=2
|
| 413 |
+
)
|
| 414 |
+
teach_btn = gr.Button("🎯 Enseñar Concepto", variant="primary")
|
| 415 |
+
status_output = gr.Textbox(
|
| 416 |
+
label="Estado",
|
| 417 |
+
interactive=False,
|
| 418 |
+
lines=2
|
| 419 |
+
)
|
| 420 |
+
|
| 421 |
+
# Información adicional
|
| 422 |
+
with gr.Row():
|
| 423 |
+
with gr.Column():
|
| 424 |
+
gr.HTML("""
|
| 425 |
+
<div style="background: #1e293b; padding: 20px; border-radius: 12px; margin-top: 20px; border: 1px solid #475569;">
|
| 426 |
+
<h3 style="color: white; margin-bottom: 15px;">🔬 Especializaciones Neuronales</h3>
|
| 427 |
+
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 10px;">
|
| 428 |
+
<div style="color: #ef4444;">🔴 Visual - Procesamiento visual</div>
|
| 429 |
+
<div style="color: #22c55e;">🟢 Semántica - Significado y conceptos</div>
|
| 430 |
+
<div style="color: #3b82f6;">🔵 Temporal - Secuencias temporales</div>
|
| 431 |
+
<div style="color: #eab308;">🟡 Espacial - Relaciones espaciales</div>
|
| 432 |
+
<div style="color: #a855f7;">🟣 Abstracta - Pensamiento abstracto</div>
|
| 433 |
+
<div style="color: #06b6d4;">🔷 Lingüística - Procesamiento de lenguaje</div>
|
| 434 |
+
<div style="color: #f97316;">🟠 Lógica - Razonamiento lógico</div>
|
| 435 |
+
<div style="color: #84cc16;">🟢 Creativa - Generación creativa</div>
|
| 436 |
+
<div style="color: #f59e0b;">🟨 Memoria - Almacenamiento</div>
|
| 437 |
+
<div style="color: #ec4899;">🟡 Aprendizaje - Adquisición de conocimiento</div>
|
| 438 |
+
</div>
|
| 439 |
+
</div>
|
| 440 |
+
""")
|
| 441 |
+
|
| 442 |
+
# Event handlers
|
| 443 |
+
step_btn.click(
|
| 444 |
+
step_simulation,
|
| 445 |
+
outputs=[plot_output, metrics_display]
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
+
auto_btn.click(
|
| 449 |
+
auto_simulation_steps,
|
| 450 |
+
outputs=[plot_output, metrics_display]
|
| 451 |
+
)
|
| 452 |
+
|
| 453 |
+
teach_btn.click(
|
| 454 |
+
teach_concept_to_network,
|
| 455 |
+
inputs=[concept_input],
|
| 456 |
+
outputs=[plot_output, metrics_display, status_output, concept_input]
|
| 457 |
+
)
|
| 458 |
+
|
| 459 |
+
concept_input.submit(
|
| 460 |
+
teach_concept_to_network,
|
| 461 |
+
inputs=[concept_input],
|
| 462 |
+
outputs=[plot_output, metrics_display, status_output, concept_input]
|
| 463 |
+
)
|
| 464 |
+
|
| 465 |
+
add_neuron_btn.click(
|
| 466 |
+
add_neuron_to_network,
|
| 467 |
+
outputs=[plot_output, metrics_display, status_output]
|
| 468 |
+
)
|
| 469 |
+
|
| 470 |
+
remove_neuron_btn.click(
|
| 471 |
+
remove_neuron_from_network,
|
| 472 |
+
outputs=[plot_output, metrics_display, status_output]
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
+
reset_btn.click(
|
| 476 |
+
reset_network,
|
| 477 |
+
outputs=[plot_output, metrics_display, status_output]
|
| 478 |
+
)
|
| 479 |
+
|
| 480 |
+
# Footer
|
| 481 |
+
gr.HTML("""
|
| 482 |
+
<div style="text-align: center; padding: 20px; margin-top: 30px; border-top: 1px solid #475569;">
|
| 483 |
+
<p style="color: #94a3b8;">
|
| 484 |
+
🚀 Desarrollado por <strong>Agnuxo</strong> |
|
| 485 |
+
💡 Simulación avanzada de redes neuronales con IA supervisada
|
| 486 |
+
</p>
|
| 487 |
+
<p style="color: #64748b; font-size: 0.9rem;">
|
| 488 |
+
Esta demostración muestra conceptos de neurociencia computacional,
|
| 489 |
+
aprendizaje automático y sistemas adaptativos complejos.
|
| 490 |
+
</p>
|
| 491 |
+
</div>
|
| 492 |
+
""")
|
| 493 |
+
|
| 494 |
+
return iface
|
| 495 |
+
|
| 496 |
+
if __name__ == "__main__":
|
| 497 |
+
iface = create_gradio_interface()
|
| 498 |
+
iface.launch(
|
| 499 |
+
server_name="0.0.0.0",
|
| 500 |
+
server_port=7860,
|
| 501 |
+
share=False
|
| 502 |
+
)
|