Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification | |
| from torchvision import transforms | |
| import torch | |
| from PIL import Image | |
| # Ensure using GPU if available | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| # Load the model and processor | |
| image_processor = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy") | |
| model = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy") | |
| model = model.to(device) | |
| clf = pipeline(model=model, task="image-classification", image_processor=image_processor, device=device) | |
| # Define class names | |
| class_names = ['artificial', 'real'] | |
| def predict_image(img, confidence_threshold): | |
| print(f"Type of img: {type(img)}") # Debugging statement | |
| if not isinstance(img, Image.Image): | |
| raise ValueError(f"Expected a PIL Image, but got {type(img)}") | |
| # Convert the image to RGB if not already | |
| if img.mode != 'RGB': | |
| img_pil = img.convert('RGB') | |
| else: | |
| img_pil = img | |
| # Resize the image | |
| img_pil = transforms.Resize((256, 256))(img_pil) | |
| # Get the prediction | |
| prediction = clf(img_pil) | |
| # Process the prediction to match the class names | |
| result = {pred['label']: pred['score'] for pred in prediction} | |
| # Ensure the result dictionary contains both class names | |
| for class_name in class_names: | |
| if class_name not in result: | |
| result[class_name] = 0.0 | |
| # Check if either class meets the confidence threshold | |
| if result['artificial'] >= confidence_threshold: | |
| return f"Label: artificial, Confidence: {result['artificial']:.4f}" | |
| elif result['real'] >= confidence_threshold: | |
| return f"Label: real, Confidence: {result['real']:.4f}" | |
| else: | |
| return "Uncertain Classification" | |
| # Define the Gradio interface | |
| image = gr.Image(label="Image to Analyze", sources=['upload'], type='pil') # Ensure the image type is PIL | |
| confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold") | |
| label = gr.Label(num_top_classes=2) | |
| gr.Interface( | |
| fn=predict_image, | |
| inputs=[image, confidence_slider], | |
| outputs=label, | |
| title="AI Generated Classification" | |
| ).launch() |