Spaces:
Sleeping
Sleeping
ui_fix
Browse files- analyzer.py +27 -8
- app.py +53 -15
analyzer.py
CHANGED
|
@@ -14,10 +14,11 @@ def analyze_code(code: str) -> str:
|
|
| 14 |
system_prompt = (
|
| 15 |
"You are a highly precise and strict JSON generator. Analyze the code given to you. "
|
| 16 |
"Your ONLY output must be a valid JSON object with the following keys: 'strength', 'weaknesses', 'speciality', 'relevance rating'. "
|
|
|
|
| 17 |
"Do NOT include any explanation, markdown, or text outside the JSON. Do NOT add any commentary, preamble, or postscript. "
|
| 18 |
"If you cannot answer, still return a valid JSON with empty strings for each key. "
|
| 19 |
"Example of the ONLY valid output:\n"
|
| 20 |
-
"{\n 'strength': '...', \n 'weaknesses': '...', \n 'speciality': '...', \n 'relevance rating': '
|
| 21 |
)
|
| 22 |
response = client.chat.completions.create(
|
| 23 |
model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ", # Updated model
|
|
@@ -108,22 +109,31 @@ def combine_repo_files_for_llm(repo_dir="repo_files", output_file="combined_repo
|
|
| 108 |
out_f.write("\n".join(combined_content))
|
| 109 |
return output_file
|
| 110 |
|
| 111 |
-
def analyze_code_chunk(code: str) -> str:
|
| 112 |
"""
|
| 113 |
Analyzes a code chunk and returns a JSON summary for that chunk.
|
| 114 |
"""
|
| 115 |
from openai import OpenAI
|
| 116 |
client = OpenAI(api_key=os.getenv("modal_api"))
|
| 117 |
client.base_url = os.getenv("base_url")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
chunk_prompt = (
|
| 119 |
"You are a highly precise and strict JSON generator. Analyze the following code chunk. "
|
| 120 |
"Your ONLY output must be a valid JSON object with the following keys: 'strength', 'weaknesses', 'speciality', 'relevance rating'. "
|
| 121 |
"All property names and string values MUST use double quotes (\"). Do NOT use single quotes. "
|
|
|
|
| 122 |
"Do NOT include any explanation, markdown, or text outside the JSON. Do NOT add any commentary, preamble, or postscript. "
|
| 123 |
"If you cannot answer, still return a valid JSON with empty strings for each key. "
|
|
|
|
| 124 |
"Example of the ONLY valid output:\n"
|
| 125 |
-
'{\n "strength": "...", \n "weaknesses": "...", \n "speciality": "...", \n "relevance rating": "
|
| 126 |
)
|
|
|
|
| 127 |
response = client.chat.completions.create(
|
| 128 |
model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
|
| 129 |
messages=[
|
|
@@ -135,21 +145,29 @@ def analyze_code_chunk(code: str) -> str:
|
|
| 135 |
)
|
| 136 |
return response.choices[0].message.content
|
| 137 |
|
| 138 |
-
def aggregate_chunk_analyses(chunk_jsons: list) -> str:
|
| 139 |
"""
|
| 140 |
Aggregates a list of chunk JSONs into a single JSON summary using the LLM.
|
| 141 |
"""
|
| 142 |
from openai import OpenAI
|
| 143 |
client = OpenAI(api_key=os.getenv("modal_api"))
|
| 144 |
client.base_url = os.getenv("base_url")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
aggregation_prompt = (
|
| 146 |
"You are a highly precise and strict, code analyzer and JSON generator. You are given a list of JSON analyses of code chunks. "
|
| 147 |
"Aggregate these into a SINGLE overall JSON summary with the same keys: 'strength', 'weaknesses', 'speciality', 'relevance rating'. "
|
| 148 |
"All property names and string values MUST use double quotes (\"). Do NOT use single quotes. "
|
|
|
|
| 149 |
"Summarize and combine the information from all chunks. Do NOT include any explanation, markdown, or text outside the JSON. "
|
| 150 |
"If a key is missing in all chunks, use an empty string. "
|
|
|
|
| 151 |
"Example of the ONLY valid output:\n"
|
| 152 |
-
'{\n "strength": "...", \n "weaknesses": "...", \n "speciality": "...", \n "relevance rating": "
|
| 153 |
)
|
| 154 |
user_content = "Here are the chunk analyses:\n" + "\n".join(chunk_jsons)
|
| 155 |
response = client.chat.completions.create(
|
|
@@ -163,9 +181,10 @@ def aggregate_chunk_analyses(chunk_jsons: list) -> str:
|
|
| 163 |
)
|
| 164 |
return response.choices[0].message.content
|
| 165 |
|
| 166 |
-
def analyze_combined_file(output_file="combined_repo.txt"):
|
| 167 |
"""
|
| 168 |
Reads the combined file, splits it into 500-line chunks, analyzes each chunk, and aggregates the LLM's output into a final summary.
|
|
|
|
| 169 |
Returns the chunk JSONs (for debugging) and the aggregated analysis as a string.
|
| 170 |
"""
|
| 171 |
try:
|
|
@@ -175,9 +194,9 @@ def analyze_combined_file(output_file="combined_repo.txt"):
|
|
| 175 |
chunk_jsons = []
|
| 176 |
for i in range(0, len(lines), chunk_size):
|
| 177 |
chunk = "".join(lines[i:i+chunk_size])
|
| 178 |
-
analysis = analyze_code_chunk(chunk)
|
| 179 |
chunk_jsons.append(analysis)
|
| 180 |
-
final_summary = aggregate_chunk_analyses(chunk_jsons)
|
| 181 |
debug_output = (
|
| 182 |
"==== Chunk JSON Outputs ===="
|
| 183 |
+ "\n\n".join([f"Chunk {i+1} JSON:\n{chunk_jsons[i]}" for i in range(len(chunk_jsons))])
|
|
|
|
| 14 |
system_prompt = (
|
| 15 |
"You are a highly precise and strict JSON generator. Analyze the code given to you. "
|
| 16 |
"Your ONLY output must be a valid JSON object with the following keys: 'strength', 'weaknesses', 'speciality', 'relevance rating'. "
|
| 17 |
+
"For 'relevance rating', you MUST use ONLY one of these exact values: 'very low', 'low', 'high', 'very high'. "
|
| 18 |
"Do NOT include any explanation, markdown, or text outside the JSON. Do NOT add any commentary, preamble, or postscript. "
|
| 19 |
"If you cannot answer, still return a valid JSON with empty strings for each key. "
|
| 20 |
"Example of the ONLY valid output:\n"
|
| 21 |
+
"{\n 'strength': '...', \n 'weaknesses': '...', \n 'speciality': '...', \n 'relevance rating': 'high'\n}"
|
| 22 |
)
|
| 23 |
response = client.chat.completions.create(
|
| 24 |
model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ", # Updated model
|
|
|
|
| 109 |
out_f.write("\n".join(combined_content))
|
| 110 |
return output_file
|
| 111 |
|
| 112 |
+
def analyze_code_chunk(code: str, user_requirements: str = "") -> str:
|
| 113 |
"""
|
| 114 |
Analyzes a code chunk and returns a JSON summary for that chunk.
|
| 115 |
"""
|
| 116 |
from openai import OpenAI
|
| 117 |
client = OpenAI(api_key=os.getenv("modal_api"))
|
| 118 |
client.base_url = os.getenv("base_url")
|
| 119 |
+
|
| 120 |
+
# Build the user requirements section
|
| 121 |
+
requirements_section = ""
|
| 122 |
+
if user_requirements.strip():
|
| 123 |
+
requirements_section = f"\n\nUSER REQUIREMENTS:\n{user_requirements}\n\nWhen rating relevance, consider how well this code matches the user's stated requirements."
|
| 124 |
+
|
| 125 |
chunk_prompt = (
|
| 126 |
"You are a highly precise and strict JSON generator. Analyze the following code chunk. "
|
| 127 |
"Your ONLY output must be a valid JSON object with the following keys: 'strength', 'weaknesses', 'speciality', 'relevance rating'. "
|
| 128 |
"All property names and string values MUST use double quotes (\"). Do NOT use single quotes. "
|
| 129 |
+
"For 'relevance rating', you MUST use ONLY one of these exact values: 'very low', 'low', 'high', 'very high'. "
|
| 130 |
"Do NOT include any explanation, markdown, or text outside the JSON. Do NOT add any commentary, preamble, or postscript. "
|
| 131 |
"If you cannot answer, still return a valid JSON with empty strings for each key. "
|
| 132 |
+
f"{requirements_section}"
|
| 133 |
"Example of the ONLY valid output:\n"
|
| 134 |
+
'{\n "strength": "...", \n "weaknesses": "...", \n "speciality": "...", \n "relevance rating": "high"\n}'
|
| 135 |
)
|
| 136 |
+
|
| 137 |
response = client.chat.completions.create(
|
| 138 |
model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
|
| 139 |
messages=[
|
|
|
|
| 145 |
)
|
| 146 |
return response.choices[0].message.content
|
| 147 |
|
| 148 |
+
def aggregate_chunk_analyses(chunk_jsons: list, user_requirements: str = "") -> str:
|
| 149 |
"""
|
| 150 |
Aggregates a list of chunk JSONs into a single JSON summary using the LLM.
|
| 151 |
"""
|
| 152 |
from openai import OpenAI
|
| 153 |
client = OpenAI(api_key=os.getenv("modal_api"))
|
| 154 |
client.base_url = os.getenv("base_url")
|
| 155 |
+
|
| 156 |
+
# Build the user requirements section
|
| 157 |
+
requirements_section = ""
|
| 158 |
+
if user_requirements.strip():
|
| 159 |
+
requirements_section = f"\n\nUSER REQUIREMENTS:\n{user_requirements}\n\nWhen aggregating the relevance rating, consider how well the overall repository matches the user's stated requirements."
|
| 160 |
+
|
| 161 |
aggregation_prompt = (
|
| 162 |
"You are a highly precise and strict, code analyzer and JSON generator. You are given a list of JSON analyses of code chunks. "
|
| 163 |
"Aggregate these into a SINGLE overall JSON summary with the same keys: 'strength', 'weaknesses', 'speciality', 'relevance rating'. "
|
| 164 |
"All property names and string values MUST use double quotes (\"). Do NOT use single quotes. "
|
| 165 |
+
"For 'relevance rating', you MUST use ONLY one of these exact values: 'very low', 'low', 'high', 'very high'. "
|
| 166 |
"Summarize and combine the information from all chunks. Do NOT include any explanation, markdown, or text outside the JSON. "
|
| 167 |
"If a key is missing in all chunks, use an empty string. "
|
| 168 |
+
f"{requirements_section}"
|
| 169 |
"Example of the ONLY valid output:\n"
|
| 170 |
+
'{\n "strength": "...", \n "weaknesses": "...", \n "speciality": "...", \n "relevance rating": "high"\n}'
|
| 171 |
)
|
| 172 |
user_content = "Here are the chunk analyses:\n" + "\n".join(chunk_jsons)
|
| 173 |
response = client.chat.completions.create(
|
|
|
|
| 181 |
)
|
| 182 |
return response.choices[0].message.content
|
| 183 |
|
| 184 |
+
def analyze_combined_file(output_file="combined_repo.txt", user_requirements: str = ""):
|
| 185 |
"""
|
| 186 |
Reads the combined file, splits it into 500-line chunks, analyzes each chunk, and aggregates the LLM's output into a final summary.
|
| 187 |
+
Now includes user requirements for better relevance rating.
|
| 188 |
Returns the chunk JSONs (for debugging) and the aggregated analysis as a string.
|
| 189 |
"""
|
| 190 |
try:
|
|
|
|
| 194 |
chunk_jsons = []
|
| 195 |
for i in range(0, len(lines), chunk_size):
|
| 196 |
chunk = "".join(lines[i:i+chunk_size])
|
| 197 |
+
analysis = analyze_code_chunk(chunk, user_requirements)
|
| 198 |
chunk_jsons.append(analysis)
|
| 199 |
+
final_summary = aggregate_chunk_analyses(chunk_jsons, user_requirements)
|
| 200 |
debug_output = (
|
| 201 |
"==== Chunk JSON Outputs ===="
|
| 202 |
+ "\n\n".join([f"Chunk {i+1} JSON:\n{chunk_jsons[i]}" for i in range(len(chunk_jsons))])
|
app.py
CHANGED
|
@@ -48,9 +48,10 @@ def read_csv_to_dataframe() -> pd.DataFrame:
|
|
| 48 |
logger.error(f"Error reading CSV: {e}")
|
| 49 |
return pd.DataFrame()
|
| 50 |
|
| 51 |
-
def analyze_and_update_single_repo(repo_id: str) -> Tuple[str, str, pd.DataFrame]:
|
| 52 |
"""
|
| 53 |
Downloads, analyzes a single repo, updates the CSV, and returns results.
|
|
|
|
| 54 |
This function combines the logic of downloading, analyzing, and updating the CSV for one repo.
|
| 55 |
"""
|
| 56 |
try:
|
|
@@ -61,7 +62,7 @@ def analyze_and_update_single_repo(repo_id: str) -> Tuple[str, str, pd.DataFrame
|
|
| 61 |
with open(txt_path, "r", encoding="utf-8") as f:
|
| 62 |
combined_content = f.read()
|
| 63 |
|
| 64 |
-
llm_output = analyze_combined_file(txt_path)
|
| 65 |
|
| 66 |
last_start = llm_output.rfind('{')
|
| 67 |
last_end = llm_output.rfind('}')
|
|
@@ -73,7 +74,8 @@ def analyze_and_update_single_repo(repo_id: str) -> Tuple[str, str, pd.DataFrame
|
|
| 73 |
if isinstance(llm_json, dict) and "error" not in llm_json:
|
| 74 |
strengths = llm_json.get("strength", "N/A")
|
| 75 |
weaknesses = llm_json.get("weaknesses", "N/A")
|
| 76 |
-
|
|
|
|
| 77 |
else:
|
| 78 |
summary = f"JSON extraction: FAILED\nRaw response might not be valid JSON."
|
| 79 |
|
|
@@ -128,7 +130,7 @@ def create_ui() -> gr.Blocks:
|
|
| 128 |
/* Modern sleek design */
|
| 129 |
.gradio-container {
|
| 130 |
font-family: 'Inter', 'system-ui', sans-serif;
|
| 131 |
-
background: linear-gradient(135deg, #
|
| 132 |
min-height: 100vh;
|
| 133 |
}
|
| 134 |
|
|
@@ -239,6 +241,7 @@ def create_ui() -> gr.Blocks:
|
|
| 239 |
# Using simple, separate state objects for robustness.
|
| 240 |
repo_ids_state = gr.State([])
|
| 241 |
current_repo_idx_state = gr.State(0)
|
|
|
|
| 242 |
|
| 243 |
gr.Markdown(
|
| 244 |
"""
|
|
@@ -284,6 +287,15 @@ def create_ui() -> gr.Blocks:
|
|
| 284 |
with gr.TabItem("π¬ Analysis", id="analysis_tab"):
|
| 285 |
gr.Markdown("### π§ͺ Repository Analysis Engine")
|
| 286 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
with gr.Row():
|
| 288 |
analyze_next_btn = gr.Button("β‘ Analyze Next Repository", variant="primary", size="lg", scale=2)
|
| 289 |
with gr.Column(scale=3):
|
|
@@ -396,7 +408,24 @@ def create_ui() -> gr.Blocks:
|
|
| 396 |
status = f"Status: Found {len(unique_repo_ids)} repositories. Ready for analysis."
|
| 397 |
return unique_repo_ids, 0, df, status, gr.update(selected="analysis_tab")
|
| 398 |
|
| 399 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 400 |
"""Analyzes the next repository in the list."""
|
| 401 |
if not repo_ids:
|
| 402 |
return "", "", pd.DataFrame(), 0, "Status: No repositories to analyze. Please submit repo IDs first."
|
|
@@ -405,8 +434,10 @@ def create_ui() -> gr.Blocks:
|
|
| 405 |
|
| 406 |
repo_id_to_analyze = repo_ids[current_idx]
|
| 407 |
status = f"Status: Analyzing repository {current_idx + 1}/{len(repo_ids)}: {repo_id_to_analyze}"
|
|
|
|
|
|
|
| 408 |
|
| 409 |
-
content, summary, df = analyze_and_update_single_repo(repo_id_to_analyze)
|
| 410 |
|
| 411 |
next_idx = current_idx + 1
|
| 412 |
if next_idx >= len(repo_ids):
|
|
@@ -437,15 +468,15 @@ def create_ui() -> gr.Blocks:
|
|
| 437 |
history.append({"role": "assistant", "content": response})
|
| 438 |
return history
|
| 439 |
|
| 440 |
-
def handle_end_chat(history: List[Dict[str, str]]) -> Tuple[str, str]:
|
| 441 |
-
"""Ends the chat, extracts and sanitizes keywords from the conversation."""
|
| 442 |
if not history:
|
| 443 |
-
return "", "Status: Chat is empty, nothing to analyze."
|
| 444 |
|
| 445 |
# Convert the full, valid history for the extraction logic
|
| 446 |
tuple_history = convert_messages_to_tuples(history)
|
| 447 |
if not tuple_history:
|
| 448 |
-
return "", "Status: No completed conversations to analyze."
|
| 449 |
|
| 450 |
# Get raw keywords string from the LLM
|
| 451 |
raw_keywords_str = extract_keywords_from_conversation(tuple_history)
|
|
@@ -458,13 +489,16 @@ def create_ui() -> gr.Blocks:
|
|
| 458 |
cleaned_keywords = [kw.strip() for kw in cleaned_keywords if kw.strip()]
|
| 459 |
|
| 460 |
if not cleaned_keywords:
|
| 461 |
-
return "", f"Status: Could not extract valid keywords. Raw LLM output: '{raw_keywords_str}'"
|
| 462 |
|
| 463 |
# Join them into a clean, comma-separated string for the search tool
|
| 464 |
final_keywords_str = ", ".join(cleaned_keywords)
|
| 465 |
|
| 466 |
-
|
| 467 |
-
|
|
|
|
|
|
|
|
|
|
| 468 |
|
| 469 |
# --- Component Event Wiring ---
|
| 470 |
|
|
@@ -489,7 +523,7 @@ def create_ui() -> gr.Blocks:
|
|
| 489 |
# Analysis Tab
|
| 490 |
analyze_next_btn.click(
|
| 491 |
fn=handle_analyze_next,
|
| 492 |
-
inputs=[repo_ids_state, current_repo_idx_state],
|
| 493 |
outputs=[content_output, summary_output, df_output, current_repo_idx_state, status_box_analysis]
|
| 494 |
)
|
| 495 |
|
|
@@ -515,7 +549,11 @@ def create_ui() -> gr.Blocks:
|
|
| 515 |
end_chat_btn.click(
|
| 516 |
fn=handle_end_chat,
|
| 517 |
inputs=[chatbot],
|
| 518 |
-
outputs=[extracted_keywords_output, status_box_chatbot]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 519 |
)
|
| 520 |
use_keywords_btn.click(
|
| 521 |
fn=handle_keyword_search,
|
|
|
|
| 48 |
logger.error(f"Error reading CSV: {e}")
|
| 49 |
return pd.DataFrame()
|
| 50 |
|
| 51 |
+
def analyze_and_update_single_repo(repo_id: str, user_requirements: str = "") -> Tuple[str, str, pd.DataFrame]:
|
| 52 |
"""
|
| 53 |
Downloads, analyzes a single repo, updates the CSV, and returns results.
|
| 54 |
+
Now includes user requirements for better relevance rating.
|
| 55 |
This function combines the logic of downloading, analyzing, and updating the CSV for one repo.
|
| 56 |
"""
|
| 57 |
try:
|
|
|
|
| 62 |
with open(txt_path, "r", encoding="utf-8") as f:
|
| 63 |
combined_content = f.read()
|
| 64 |
|
| 65 |
+
llm_output = analyze_combined_file(txt_path, user_requirements)
|
| 66 |
|
| 67 |
last_start = llm_output.rfind('{')
|
| 68 |
last_end = llm_output.rfind('}')
|
|
|
|
| 74 |
if isinstance(llm_json, dict) and "error" not in llm_json:
|
| 75 |
strengths = llm_json.get("strength", "N/A")
|
| 76 |
weaknesses = llm_json.get("weaknesses", "N/A")
|
| 77 |
+
relevance = llm_json.get("relevance rating", "N/A")
|
| 78 |
+
summary = f"JSON extraction: SUCCESS\n\nStrengths:\n{strengths}\n\nWeaknesses:\n{weaknesses}\n\nRelevance: {relevance}"
|
| 79 |
else:
|
| 80 |
summary = f"JSON extraction: FAILED\nRaw response might not be valid JSON."
|
| 81 |
|
|
|
|
| 130 |
/* Modern sleek design */
|
| 131 |
.gradio-container {
|
| 132 |
font-family: 'Inter', 'system-ui', sans-serif;
|
| 133 |
+
background: linear-gradient(135deg, #0a0a0a 0%, #1a1a1a 100%);
|
| 134 |
min-height: 100vh;
|
| 135 |
}
|
| 136 |
|
|
|
|
| 241 |
# Using simple, separate state objects for robustness.
|
| 242 |
repo_ids_state = gr.State([])
|
| 243 |
current_repo_idx_state = gr.State(0)
|
| 244 |
+
user_requirements_state = gr.State("") # Store user requirements from chatbot
|
| 245 |
|
| 246 |
gr.Markdown(
|
| 247 |
"""
|
|
|
|
| 287 |
with gr.TabItem("π¬ Analysis", id="analysis_tab"):
|
| 288 |
gr.Markdown("### π§ͺ Repository Analysis Engine")
|
| 289 |
|
| 290 |
+
# Display current user requirements
|
| 291 |
+
with gr.Row():
|
| 292 |
+
current_requirements_display = gr.Textbox(
|
| 293 |
+
label="π Current User Requirements",
|
| 294 |
+
interactive=False,
|
| 295 |
+
lines=3,
|
| 296 |
+
info="Requirements extracted from AI chat conversation for relevance rating"
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
with gr.Row():
|
| 300 |
analyze_next_btn = gr.Button("β‘ Analyze Next Repository", variant="primary", size="lg", scale=2)
|
| 301 |
with gr.Column(scale=3):
|
|
|
|
| 408 |
status = f"Status: Found {len(unique_repo_ids)} repositories. Ready for analysis."
|
| 409 |
return unique_repo_ids, 0, df, status, gr.update(selected="analysis_tab")
|
| 410 |
|
| 411 |
+
def extract_user_requirements_from_chat(history: List[Dict[str, str]]) -> str:
|
| 412 |
+
"""Extract user requirements from chatbot conversation."""
|
| 413 |
+
if not history:
|
| 414 |
+
return ""
|
| 415 |
+
|
| 416 |
+
user_messages = []
|
| 417 |
+
for msg in history:
|
| 418 |
+
if msg.get('role') == 'user':
|
| 419 |
+
user_messages.append(msg.get('content', ''))
|
| 420 |
+
|
| 421 |
+
if not user_messages:
|
| 422 |
+
return ""
|
| 423 |
+
|
| 424 |
+
# Combine all user messages as requirements
|
| 425 |
+
requirements = "\n".join([f"- {msg}" for msg in user_messages if msg.strip()])
|
| 426 |
+
return requirements
|
| 427 |
+
|
| 428 |
+
def handle_analyze_next(repo_ids: List[str], current_idx: int, user_requirements: str) -> Tuple[str, str, pd.DataFrame, int, str]:
|
| 429 |
"""Analyzes the next repository in the list."""
|
| 430 |
if not repo_ids:
|
| 431 |
return "", "", pd.DataFrame(), 0, "Status: No repositories to analyze. Please submit repo IDs first."
|
|
|
|
| 434 |
|
| 435 |
repo_id_to_analyze = repo_ids[current_idx]
|
| 436 |
status = f"Status: Analyzing repository {current_idx + 1}/{len(repo_ids)}: {repo_id_to_analyze}"
|
| 437 |
+
if user_requirements.strip():
|
| 438 |
+
status += f"\nUsing user requirements for relevance rating."
|
| 439 |
|
| 440 |
+
content, summary, df = analyze_and_update_single_repo(repo_id_to_analyze, user_requirements)
|
| 441 |
|
| 442 |
next_idx = current_idx + 1
|
| 443 |
if next_idx >= len(repo_ids):
|
|
|
|
| 468 |
history.append({"role": "assistant", "content": response})
|
| 469 |
return history
|
| 470 |
|
| 471 |
+
def handle_end_chat(history: List[Dict[str, str]]) -> Tuple[str, str, str]:
|
| 472 |
+
"""Ends the chat, extracts and sanitizes keywords from the conversation, and extracts user requirements."""
|
| 473 |
if not history:
|
| 474 |
+
return "", "Status: Chat is empty, nothing to analyze.", ""
|
| 475 |
|
| 476 |
# Convert the full, valid history for the extraction logic
|
| 477 |
tuple_history = convert_messages_to_tuples(history)
|
| 478 |
if not tuple_history:
|
| 479 |
+
return "", "Status: No completed conversations to analyze.", ""
|
| 480 |
|
| 481 |
# Get raw keywords string from the LLM
|
| 482 |
raw_keywords_str = extract_keywords_from_conversation(tuple_history)
|
|
|
|
| 489 |
cleaned_keywords = [kw.strip() for kw in cleaned_keywords if kw.strip()]
|
| 490 |
|
| 491 |
if not cleaned_keywords:
|
| 492 |
+
return "", f"Status: Could not extract valid keywords. Raw LLM output: '{raw_keywords_str}'", ""
|
| 493 |
|
| 494 |
# Join them into a clean, comma-separated string for the search tool
|
| 495 |
final_keywords_str = ", ".join(cleaned_keywords)
|
| 496 |
|
| 497 |
+
# Extract user requirements for analysis
|
| 498 |
+
user_requirements = extract_user_requirements_from_chat(history)
|
| 499 |
+
|
| 500 |
+
status = "Status: Keywords extracted. User requirements saved for analysis."
|
| 501 |
+
return final_keywords_str, status, user_requirements
|
| 502 |
|
| 503 |
# --- Component Event Wiring ---
|
| 504 |
|
|
|
|
| 523 |
# Analysis Tab
|
| 524 |
analyze_next_btn.click(
|
| 525 |
fn=handle_analyze_next,
|
| 526 |
+
inputs=[repo_ids_state, current_repo_idx_state, user_requirements_state],
|
| 527 |
outputs=[content_output, summary_output, df_output, current_repo_idx_state, status_box_analysis]
|
| 528 |
)
|
| 529 |
|
|
|
|
| 549 |
end_chat_btn.click(
|
| 550 |
fn=handle_end_chat,
|
| 551 |
inputs=[chatbot],
|
| 552 |
+
outputs=[extracted_keywords_output, status_box_chatbot, user_requirements_state]
|
| 553 |
+
).then(
|
| 554 |
+
fn=lambda req: req if req.strip() else "No specific requirements extracted from conversation.",
|
| 555 |
+
inputs=[user_requirements_state],
|
| 556 |
+
outputs=[current_requirements_display]
|
| 557 |
)
|
| 558 |
use_keywords_btn.click(
|
| 559 |
fn=handle_keyword_search,
|