Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,256 +1,230 @@
|
|
| 1 |
-
# app.py
|
| 2 |
-
|
| 3 |
import gradio as gr
|
| 4 |
import os
|
|
|
|
|
|
|
|
|
|
| 5 |
import traceback
|
| 6 |
import asyncio
|
| 7 |
-
from dotenv import load_dotenv
|
| 8 |
-
|
| 9 |
-
import
|
| 10 |
-
from llama_index.core import Settings as LlamaSettings
|
| 11 |
-
from llama_index.llms.anthropic import Anthropic
|
| 12 |
-
from manager_agent import ManagerAgent # Ensure this path is correct
|
| 13 |
-
import concurrent.futures
|
| 14 |
|
| 15 |
# Load environment variables from .env file
|
| 16 |
load_dotenv()
|
| 17 |
|
|
|
|
|
|
|
|
|
|
| 18 |
# --- Configuration ---
|
| 19 |
-
LLM_MODEL = "claude-sonnet-4-20250514"
|
| 20 |
|
| 21 |
-
# --- Global variables ---
|
|
|
|
| 22 |
current_status = "Ready"
|
| 23 |
-
llm_global = None
|
| 24 |
-
manager_agent_global = None
|
| 25 |
-
|
| 26 |
-
# Thread pool executor for running blocking agent tasks
|
| 27 |
-
# Use a smaller number of workers on resource-constrained environments like HF Spaces free tier
|
| 28 |
-
MAX_WORKERS = min(4, (os.cpu_count() or 1) + 4) # Based on concurrent.futures recommendation
|
| 29 |
-
thread_pool_executor = concurrent.futures.ThreadPoolExecutor(max_workers=MAX_WORKERS)
|
| 30 |
-
|
| 31 |
|
| 32 |
# --- LlamaIndex LLM Initialization ---
|
| 33 |
-
def
|
| 34 |
-
|
| 35 |
-
|
|
|
|
| 36 |
api_key = os.environ.get("ANTHROPIC_API_KEY")
|
| 37 |
if not api_key:
|
| 38 |
print("\n" + "="*60)
|
| 39 |
print("⚠️ ERROR: ANTHROPIC_API_KEY not found in environment variables!")
|
| 40 |
-
print("Please set your
|
|
|
|
|
|
|
| 41 |
print("="*60 + "\n")
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
return
|
| 45 |
-
|
| 46 |
try:
|
| 47 |
-
|
|
|
|
| 48 |
model=LLM_MODEL,
|
| 49 |
-
temperature=0.2,
|
| 50 |
-
max_tokens=4096
|
| 51 |
)
|
| 52 |
-
|
| 53 |
-
print(f"Successfully initialized LlamaIndex with Anthropic model: {LLM_MODEL}")
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
| 59 |
)
|
| 60 |
print("✅ ManagerAgent initialized successfully")
|
| 61 |
-
|
|
|
|
|
|
|
| 62 |
except Exception as e:
|
| 63 |
print(f"Error initializing Anthropic LLM or ManagerAgent: {e}")
|
| 64 |
traceback.print_exc()
|
| 65 |
-
|
| 66 |
|
| 67 |
-
# --- Update callback function
|
| 68 |
-
def
|
|
|
|
| 69 |
global current_status
|
| 70 |
current_status = message
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
# --- Status
|
| 74 |
-
def
|
|
|
|
| 75 |
global current_status
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
# --- Gradio Interface Setup ---
|
| 80 |
-
def
|
| 81 |
-
|
|
|
|
|
|
|
| 82 |
if "ANTHROPIC_API_KEY" not in os.environ:
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
print("
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
label="Chat",
|
| 94 |
height=500,
|
| 95 |
show_label=False,
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
with gr.Row():
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
)
|
| 106 |
-
|
| 107 |
-
gr.Examples(
|
| 108 |
-
examples=[
|
| 109 |
-
"Hello",
|
| 110 |
-
"What is the temperature in Paris now?",
|
| 111 |
-
"🔍 Recherche des informations sur l'intelligence artificielle",
|
| 112 |
-
"📊 Analyse les tendances du marché technologique",
|
| 113 |
-
],
|
| 114 |
-
inputs=message_textbox,
|
| 115 |
-
)
|
| 116 |
-
|
| 117 |
-
status_box_component = gr.Textbox(
|
| 118 |
-
label="Agent Status",
|
| 119 |
-
value=get_current_status_for_ui(), # Initial value
|
| 120 |
-
interactive=False,
|
| 121 |
-
)
|
| 122 |
-
|
| 123 |
-
def add_user_msg(user_input_text, chat_history_list):
|
| 124 |
-
if chat_history_list is None: # Robustness for first message
|
| 125 |
-
chat_history_list = []
|
| 126 |
-
if not user_input_text.strip():
|
| 127 |
-
return gr.update(value=user_input_text), chat_history_list # Return original textbox value if empty
|
| 128 |
-
chat_history_list.append((user_input_text, None)) # Using tuple format
|
| 129 |
-
return gr.update(value=""), chat_history_list
|
| 130 |
-
|
| 131 |
-
async def generate_bot_reply(chat_history_list):
|
| 132 |
-
if chat_history_list is None or not chat_history_list or chat_history_list[-1][0] is None:
|
| 133 |
-
yield [] # Return empty history or handle as error
|
| 134 |
-
return
|
| 135 |
-
|
| 136 |
-
user_message = chat_history_list[-1][0]
|
| 137 |
-
|
| 138 |
-
if manager_agent_global is None or LlamaSettings.llm is None:
|
| 139 |
-
update_status_callback("⚠️ Error: Agent or LLM not initialized. Check API key and logs.")
|
| 140 |
-
# Ensure history is not None before trying to update
|
| 141 |
-
current_user_msg_tuple = chat_history_list[-1] if chat_history_list else (user_message, None)
|
| 142 |
-
chat_history_list[-1] = (current_user_msg_tuple[0], "❌ Critical Error: ALITA is not properly initialized. Please check server logs and API key.")
|
| 143 |
-
yield chat_history_list
|
| 144 |
-
return
|
| 145 |
-
|
| 146 |
-
try:
|
| 147 |
-
print(f"\n🤖 GRADIOLOG: Processing user message: '{user_message[:100]}'")
|
| 148 |
-
update_status_callback(f"💬 Processing: '{user_message[:50]}{'...' if len(user_message) > 50 else ''}'")
|
| 149 |
-
await asyncio.sleep(0.01)
|
| 150 |
-
|
| 151 |
-
task_prompt = TaskPrompt(text=user_message)
|
| 152 |
-
|
| 153 |
-
update_status_callback("🔄 Analyzing request...")
|
| 154 |
-
await asyncio.sleep(0.01)
|
| 155 |
-
|
| 156 |
-
loop = asyncio.get_event_loop()
|
| 157 |
-
response_text_from_agent = await loop.run_in_executor(
|
| 158 |
-
thread_pool_executor,
|
| 159 |
-
manager_agent_global.run_task,
|
| 160 |
-
task_prompt
|
| 161 |
)
|
| 162 |
-
|
| 163 |
-
update_status_callback("✨ Generating final response stream...")
|
| 164 |
-
await asyncio.sleep(0.01)
|
| 165 |
-
final_bot_response = response_text_from_agent
|
| 166 |
-
|
| 167 |
-
words = final_bot_response.split()
|
| 168 |
-
accumulated_response_stream = ""
|
| 169 |
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
if i == len(words) // 4: update_status_callback("🔄 Streaming response (25%)...")
|
| 181 |
-
elif i == len(words) // 2: update_status_callback("🔄 Streaming response (50%)...")
|
| 182 |
-
elif i == (len(words) * 3) // 4: update_status_callback("🔄 Streaming response (75%)...")
|
| 183 |
-
|
| 184 |
-
if i % 3 == 0 or i == len(words) - 1:
|
| 185 |
-
chat_history_list[-1] = (current_user_msg_tuple[0], accumulated_response_stream.strip())
|
| 186 |
-
yield chat_history_list
|
| 187 |
-
await asyncio.sleep(0.01)
|
| 188 |
-
|
| 189 |
-
if chat_history_list[-1][1] != final_bot_response.strip():
|
| 190 |
-
chat_history_list[-1] = (current_user_msg_tuple[0], final_bot_response.strip())
|
| 191 |
-
yield chat_history_list
|
| 192 |
-
|
| 193 |
-
print("✅ GRADIOLOG: Task processing and streaming completed.")
|
| 194 |
-
update_status_callback("✅ Ready for your next request")
|
| 195 |
-
|
| 196 |
-
except Exception as e:
|
| 197 |
-
error_message_for_ui = f"❌ Gradio/Agent Error: {str(e)}"
|
| 198 |
-
print(f"\n🚨 GRADIOLOG: Error in generate_bot_reply: {e}")
|
| 199 |
-
traceback.print_exc()
|
| 200 |
-
update_status_callback(f"❌ Error: {str(e)[:100]}...")
|
| 201 |
-
current_user_msg_tuple = chat_history_list[-1] if chat_history_list else (user_message, None)
|
| 202 |
-
chat_history_list[-1] = (current_user_msg_tuple[0], error_message_for_ui)
|
| 203 |
-
yield chat_history_list
|
| 204 |
-
|
| 205 |
-
message_textbox.submit(
|
| 206 |
-
add_user_msg,
|
| 207 |
-
inputs=[message_textbox, chatbot_component],
|
| 208 |
-
outputs=[message_textbox, chatbot_component],
|
| 209 |
-
).then(
|
| 210 |
-
generate_bot_reply,
|
| 211 |
-
inputs=[chatbot_component],
|
| 212 |
-
outputs=[chatbot_component],
|
| 213 |
-
api_name=False,
|
| 214 |
-
)
|
| 215 |
-
|
| 216 |
-
async def continuous_status_updater(update_interval_seconds=0.3):
|
| 217 |
-
print("GRADIOLOG: Starting continuous_status_updater loop.")
|
| 218 |
-
while True:
|
| 219 |
-
yield get_current_status_for_ui()
|
| 220 |
-
await asyncio.sleep(update_interval_seconds)
|
| 221 |
-
|
| 222 |
-
# demo.load is the correct way to start a background task on Blocks load
|
| 223 |
-
demo.load(continuous_status_updater, inputs=None, outputs=status_box_component)
|
| 224 |
-
print("GRADIOLOG: Continuous status updater loaded.")
|
| 225 |
-
return demo
|
| 226 |
|
| 227 |
-
# Initialize
|
| 228 |
-
|
| 229 |
-
# but for global setup, it's fine here.
|
| 230 |
-
initialize_components()
|
| 231 |
|
| 232 |
# --- Launch the Application ---
|
| 233 |
if __name__ == "__main__":
|
| 234 |
-
print(f"Gradio version being used: {gr.__version__}")
|
| 235 |
-
|
| 236 |
print("🚀 Starting Gradio ALITA Chat Application...")
|
| 237 |
-
|
| 238 |
-
|
|
|
|
|
|
|
| 239 |
try:
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
server_name="
|
| 243 |
-
server_port=
|
| 244 |
-
show_error=True
|
| 245 |
)
|
| 246 |
except KeyboardInterrupt:
|
| 247 |
print("\n👋 Application stopped by user")
|
| 248 |
except Exception as e:
|
| 249 |
print(f"\n❌ Error launching application: {e}")
|
| 250 |
traceback.print_exc()
|
| 251 |
-
|
| 252 |
-
print("Shutting down thread pool executor...")
|
| 253 |
-
if thread_pool_executor: # Check if it was initialized
|
| 254 |
-
thread_pool_executor.shutdown(wait=False) # HF Spaces might kill it anyway
|
| 255 |
-
|
| 256 |
print("✅ Gradio application stopped.")
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
| 3 |
+
from llama_index.core import Settings
|
| 4 |
+
from llama_index.llms.anthropic import Anthropic
|
| 5 |
+
from llama_index.core.llms import ChatMessage, MessageRole
|
| 6 |
import traceback
|
| 7 |
import asyncio
|
| 8 |
+
from dotenv import load_dotenv # Make sure to use this
|
| 9 |
+
import uuid
|
| 10 |
+
from models.task_prompt import TaskPrompt # Import from models directory
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Load environment variables from .env file
|
| 13 |
load_dotenv()
|
| 14 |
|
| 15 |
+
# Import your ManagerAgent and related classes
|
| 16 |
+
from manager_agent2 import ManagerAgent # Using the existing manager_agent.py file
|
| 17 |
+
|
| 18 |
# --- Configuration ---
|
| 19 |
+
LLM_MODEL = "claude-sonnet-4-20250514" # Modèle Claude Opus 4
|
| 20 |
|
| 21 |
+
# --- Global variables for update handling ---
|
| 22 |
+
status_update_queue = asyncio.Queue()
|
| 23 |
current_status = "Ready"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
# --- LlamaIndex LLM Initialization ---
|
| 26 |
+
def initialize_llm_and_agent():
|
| 27 |
+
"""Initialize LLM and Manager Agent with proper error handling"""
|
| 28 |
+
|
| 29 |
+
# Check if API key is available
|
| 30 |
api_key = os.environ.get("ANTHROPIC_API_KEY")
|
| 31 |
if not api_key:
|
| 32 |
print("\n" + "="*60)
|
| 33 |
print("⚠️ ERROR: ANTHROPIC_API_KEY not found in environment variables!")
|
| 34 |
+
print("Please set your API key using one of these methods:")
|
| 35 |
+
print("1. Create a .env file with: ANTHROPIC_API_KEY=your-api-key-here")
|
| 36 |
+
print("2. Set as environment variable: export ANTHROPIC_API_KEY='your-api-key-here'")
|
| 37 |
print("="*60 + "\n")
|
| 38 |
+
return None, None
|
| 39 |
+
|
|
|
|
|
|
|
| 40 |
try:
|
| 41 |
+
# Initialize LLM with lower temperature for more deterministic responses
|
| 42 |
+
llm = Anthropic(
|
| 43 |
model=LLM_MODEL,
|
| 44 |
+
temperature=0.2, # Lower temperature for more focused responses
|
| 45 |
+
max_tokens=4096
|
| 46 |
)
|
| 47 |
+
Settings.llm = llm
|
| 48 |
+
print(f"Successfully initialized LlamaIndex with Anthropic model: {LLM_MODEL} (temperature=0.2)")
|
| 49 |
+
|
| 50 |
+
# Initialize the ManagerAgent with update callback
|
| 51 |
+
agent = ManagerAgent(
|
| 52 |
+
llm,
|
| 53 |
+
max_iterations=30, # Increase max_iterations to avoid "Reached max iterations" error
|
| 54 |
+
update_callback=update_status # Pass the update callback function
|
| 55 |
)
|
| 56 |
print("✅ ManagerAgent initialized successfully")
|
| 57 |
+
|
| 58 |
+
return llm, agent
|
| 59 |
+
|
| 60 |
except Exception as e:
|
| 61 |
print(f"Error initializing Anthropic LLM or ManagerAgent: {e}")
|
| 62 |
traceback.print_exc()
|
| 63 |
+
return None, None
|
| 64 |
|
| 65 |
+
# --- Update callback function ---
|
| 66 |
+
def update_status(message):
|
| 67 |
+
"""Callback function for the ManagerAgent to update status"""
|
| 68 |
global current_status
|
| 69 |
current_status = message
|
| 70 |
+
|
| 71 |
+
# Add to queue for the status monitor
|
| 72 |
+
try:
|
| 73 |
+
status_update_queue.put_nowait(message)
|
| 74 |
+
except Exception as e:
|
| 75 |
+
print(f"Error adding status update to queue: {e}")
|
| 76 |
|
| 77 |
+
# --- Status monitor function ---
|
| 78 |
+
async def status_monitor():
|
| 79 |
+
"""Monitor for status updates and update the Gradio component"""
|
| 80 |
global current_status
|
| 81 |
+
|
| 82 |
+
try:
|
| 83 |
+
# Set initial status
|
| 84 |
+
yield current_status
|
| 85 |
+
|
| 86 |
+
# Monitor for updates
|
| 87 |
+
while True:
|
| 88 |
+
try:
|
| 89 |
+
# Check for new updates with a timeout
|
| 90 |
+
message = await asyncio.wait_for(status_update_queue.get(), timeout=0.5)
|
| 91 |
+
yield message
|
| 92 |
+
except asyncio.TimeoutError:
|
| 93 |
+
# No updates, continue waiting
|
| 94 |
+
await asyncio.sleep(0.1)
|
| 95 |
+
except Exception as e:
|
| 96 |
+
print(f"Error in status monitor: {e}")
|
| 97 |
+
await asyncio.sleep(1)
|
| 98 |
+
except Exception as e:
|
| 99 |
+
print(f"Status monitor error: {e}")
|
| 100 |
+
yield f"Status monitor error: {str(e)}"
|
| 101 |
+
|
| 102 |
+
# --- Gradio Chat Function ---
|
| 103 |
+
async def respond(message, history):
|
| 104 |
+
"""Fonction de réponse pour Gradio ChatInterface utilisant ManagerAgent"""
|
| 105 |
+
|
| 106 |
+
# Vérifier si le ManagerAgent est initialisé
|
| 107 |
+
if manager_agent is None or Settings.llm is None:
|
| 108 |
+
yield "❌ ManagerAgent not initialized. Please check your ANTHROPIC_API_KEY environment variable and ensure all components are properly loaded."
|
| 109 |
+
return
|
| 110 |
+
|
| 111 |
+
try:
|
| 112 |
+
print(f"\n🤖 ManagerAgent: Processing user message: '{message[:100]}{'...' if len(message) > 100 else ''}'")
|
| 113 |
+
|
| 114 |
+
# Update status
|
| 115 |
+
update_status(f"Processing your request: '{message[:50]}{'...' if len(message) > 50 else ''}'")
|
| 116 |
+
|
| 117 |
+
# Créer un TaskPrompt à partir du message utilisateur
|
| 118 |
+
# Le ManagerAgent va analyser le prompt et décider du workflow approprié
|
| 119 |
+
task_prompt = TaskPrompt(text=message)
|
| 120 |
+
|
| 121 |
+
print("🔄 ManagerAgent: Starting task execution workflow...")
|
| 122 |
+
|
| 123 |
+
# Get complete response
|
| 124 |
+
response = manager_agent.run_task(task_prompt)
|
| 125 |
+
|
| 126 |
+
# Simuler un streaming progressif de la réponse pour une meilleure UX
|
| 127 |
+
words = response.split()
|
| 128 |
+
partial_response = ""
|
| 129 |
+
|
| 130 |
+
for i, word in enumerate(words):
|
| 131 |
+
partial_response += word + " "
|
| 132 |
+
|
| 133 |
+
# Yield la réponse progressive toutes les quelques mots pour un effet de streaming
|
| 134 |
+
if i % 3 == 0 or i == len(words) - 1: # Toutes les 3 mots ou le dernier mot
|
| 135 |
+
yield partial_response.strip()
|
| 136 |
+
# Add a small delay for realistic streaming
|
| 137 |
+
await asyncio.sleep(0.01)
|
| 138 |
+
|
| 139 |
+
print("✅ ManagerAgent: Task completed successfully")
|
| 140 |
+
update_status("Ready for your next request")
|
| 141 |
+
|
| 142 |
+
except Exception as e:
|
| 143 |
+
error_message = f"❌ ManagerAgent Error: {str(e)}"
|
| 144 |
+
print(f"\n🚨 ManagerAgent Error: {e}")
|
| 145 |
+
traceback.print_exc()
|
| 146 |
+
update_status(f"Error: {str(e)}")
|
| 147 |
+
yield error_message
|
| 148 |
|
| 149 |
# --- Gradio Interface Setup ---
|
| 150 |
+
def create_interface():
|
| 151 |
+
"""Crée l'interface Gradio"""
|
| 152 |
+
|
| 153 |
+
# Vérifier la clé API
|
| 154 |
if "ANTHROPIC_API_KEY" not in os.environ:
|
| 155 |
+
print("\n" + "="*60)
|
| 156 |
+
print("⚠️ WARNING: ANTHROPIC_API_KEY not found in environment variables!")
|
| 157 |
+
print("Please set your API key:")
|
| 158 |
+
print("export ANTHROPIC_API_KEY='your-api-key-here'")
|
| 159 |
+
print("="*60 + "\n")
|
| 160 |
+
|
| 161 |
+
# Create the chat interface
|
| 162 |
+
interface = gr.ChatInterface(
|
| 163 |
+
fn=respond,
|
| 164 |
+
chatbot=gr.Chatbot(
|
|
|
|
| 165 |
height=500,
|
| 166 |
show_label=False,
|
| 167 |
+
container=True,
|
| 168 |
+
type="messages"
|
| 169 |
+
),
|
| 170 |
+
textbox=gr.Textbox(
|
| 171 |
+
placeholder="Tapez votre message ici...",
|
| 172 |
+
container=False,
|
| 173 |
+
scale=7
|
| 174 |
+
),
|
| 175 |
+
title="ALITA",
|
| 176 |
+
description=f"ALITA is a self-learning AI agent that can search for information, analyze data, create tools, and orchestrate complex tasks.",
|
| 177 |
+
examples=[
|
| 178 |
+
"🔍 Recherche des informations sur l'intelligence artificielle",
|
| 179 |
+
"📊 Analyse les tendances du marché technologique",
|
| 180 |
+
"⚡ Crée un script pour automatiser une tâche répétitive",
|
| 181 |
+
"🌐 Trouve des ressources open source pour machine learning",
|
| 182 |
+
],
|
| 183 |
+
theme="soft"
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
# Add the status box
|
| 187 |
+
with interface:
|
| 188 |
with gr.Row():
|
| 189 |
+
with gr.Column():
|
| 190 |
+
status_box = gr.Textbox(
|
| 191 |
+
label="Agent Status",
|
| 192 |
+
value="Ready",
|
| 193 |
+
interactive=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
+
# Use the Interface for status monitoring
|
| 197 |
+
gr.Interface(
|
| 198 |
+
fn=status_monitor,
|
| 199 |
+
inputs=None,
|
| 200 |
+
outputs=status_box,
|
| 201 |
+
live=True,
|
| 202 |
+
show_progress=False
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
return interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
+
# Initialize the components
|
| 208 |
+
llm, manager_agent = initialize_llm_and_agent()
|
|
|
|
|
|
|
| 209 |
|
| 210 |
# --- Launch the Application ---
|
| 211 |
if __name__ == "__main__":
|
|
|
|
|
|
|
| 212 |
print("🚀 Starting Gradio ALITA Chat Application...")
|
| 213 |
+
|
| 214 |
+
# Créer et lancer l'interface
|
| 215 |
+
app = create_interface()
|
| 216 |
+
|
| 217 |
try:
|
| 218 |
+
app.launch(
|
| 219 |
+
share=False,
|
| 220 |
+
server_name="127.0.0.1",
|
| 221 |
+
server_port=7825,
|
| 222 |
+
show_error=True
|
| 223 |
)
|
| 224 |
except KeyboardInterrupt:
|
| 225 |
print("\n👋 Application stopped by user")
|
| 226 |
except Exception as e:
|
| 227 |
print(f"\n❌ Error launching application: {e}")
|
| 228 |
traceback.print_exc()
|
| 229 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
print("✅ Gradio application stopped.")
|