Spaces:
Runtime error
Runtime error
Update README.md
Browse files
README.md
CHANGED
|
@@ -10,5 +10,327 @@ pinned: false
|
|
| 10 |
license: mit
|
| 11 |
short_description: GALITA is a self-evolving generalist AI agent
|
| 12 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
|
|
|
| 10 |
license: mit
|
| 11 |
short_description: GALITA is a self-evolving generalist AI agent
|
| 12 |
---
|
| 13 |
+
Made by:
|
| 14 |
+
Mohammed Dahbani
|
| 15 |
+
Anas Ezzakri
|
| 16 |
+
Adam Lagssaibi
|
| 17 |
+
Mouhcine Zahdi
|
| 18 |
+
Mahmoud Mokrane
|
| 19 |
+
|
| 20 |
+
# Gradio-hackathon : Generalist self-evolving ai agent inspired by Alita
|
| 21 |
+
This is my team project for the gradio hackathon 2025
|
| 22 |
+
This Project is inspired by research paper : `https://arxiv.org/abs/2505.20286`
|
| 23 |
+
|
| 24 |
+
# 📁 Structure du projet
|
| 25 |
+
```bash
|
| 26 |
+
alita_agent/
|
| 27 |
+
│
|
| 28 |
+
├── main.py # Point d'entrée principal : exécute un TaskPrompt via le ManagerAgent
|
| 29 |
+
├── manager_agent.py # Logique de coordination centrale, il orchestre tous les composants
|
| 30 |
+
├── task_prompt.py # Définit la classe TaskPrompt, contenant la requête utilisateur initiale
|
| 31 |
+
│
|
| 32 |
+
├── components/ # Contient tous les composants fonctionnels modulaires
|
| 33 |
+
│ ├── __init__.py # Rends le dossier importable comme un package
|
| 34 |
+
│ ├── script_generator.py # Génère dynamiquement du code Python à partir d'un MCPToolSpec
|
| 35 |
+
│ ├── code_runner.py # Exécute un script dans un environnement isolé et capture le résultat
|
| 36 |
+
│ ├── mcp_registry.py # Gère l'enregistrement, la recherche et la réutilisation des outils MCP
|
| 37 |
+
│ ├── web_agent.py # Effectue des recherches web ou GitHub pour aider à la génération de code
|
| 38 |
+
│ └── mcp_brainstormer.py # Génère des MCPToolSpec en analysant la tâche utilisateur
|
| 39 |
+
│
|
| 40 |
+
├── models/ # Contient les classes de données (dataclasses) utilisées dans tout le système
|
| 41 |
+
│ ├── __init__.py # Rends le dossier importable comme un package
|
| 42 |
+
│ ├── mcp_tool_spec.py # Définition de MCPToolSpec (dataclass) : nom, schémas I/O, description, pseudo-code, etc.
|
| 43 |
+
│ └── mcp_execution_result.py # Définition de MCPExecutionResult (dataclass) : succès, sortie, logs, erreur
|
| 44 |
+
│
|
| 45 |
+
├── tests/ # Contient les tests unitaires pour chaque module
|
| 46 |
+
│ ├── __init__.py # Rends le dossier importable comme un package
|
| 47 |
+
│ ├── test_script_generator.py # Tests pour vérifier la génération correcte de code et d'environnements
|
| 48 |
+
│ ├── test_code_runner.py # Tests pour s'assurer de la bonne exécution des scripts et gestion d'erreurs
|
| 49 |
+
│ ├── test_mcp_registry.py # Tests de l'enregistrement, recherche et appel d'outils dans le registre MCP
|
| 50 |
+
│ └── test_manager_agent.py # Tests d'intégration sur le comportement global du ManagerAgent
|
| 51 |
+
│
|
| 52 |
+
└── README.md # Documentation du projet, instructions, pipeline, inspirations et lien vers le papier
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
# Project Pipeline
|
| 56 |
+
|
| 57 |
+
#### 🔄 Le flux complet avec vérification de l'existence
|
| 58 |
+
1. L'utilisateur envoie un TaskPrompt
|
| 59 |
+
2. Le Manager Agent demande au MCPBrainstormer : "Quels outils faudrait-il pour résoudre cette tâche ?"
|
| 60 |
+
3. Le Brainstormer propose une ou plusieurs specs (MCPToolSpec)
|
| 61 |
+
4. Le Manager Agent consulte le MCPRegistry : "Ai-je déjà un outil enregistré dont le nom + I/O matchent cette spec ?"
|
| 62 |
+
- Oui ? ➜ réutilise l'outil existant
|
| 63 |
+
- Non ? ➜ il appel le web agent pour une recherche d'outils open-source pour implementer. Puis, le Manager prend la recherche et la donne a Brainstormer pour commencer la construction.
|
| 64 |
+
|
| 65 |
+
#### 🔍 Comment détecter que l'outil existe déjà ?
|
| 66 |
+
Par matching sur la spec MCPToolSpec :
|
| 67 |
+
- Nom exact (ou identifiant unique comme un hash)
|
| 68 |
+
|
| 69 |
+
- Ou plus intelligemment :
|
| 70 |
+
- même structure input_schema
|
| 71 |
+
- même output_schema
|
| 72 |
+
- mêmes rôles ou description proche (avec embedding / vector search)
|
| 73 |
+
|
| 74 |
+
```python
|
| 75 |
+
def check_existing_tool(spec: MCPToolSpec, registry: MCPRegistry) -> Optional[str]:
|
| 76 |
+
for registered_spec in registry.list_tools():
|
| 77 |
+
if registered_spec.input_schema == spec.input_schema and \
|
| 78 |
+
registered_spec.output_schema == spec.output_schema:
|
| 79 |
+
return registry.get_tool_endpoint(registered_spec.name)
|
| 80 |
+
return None
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
#### 💬 Que fait l'agent s'il le trouve ?
|
| 84 |
+
Il ne régénère rien :
|
| 85 |
+
- Il ajoute l'appel de l'outil MCP existant dans son plan
|
| 86 |
+
- Il formate l'entrée JSON
|
| 87 |
+
- Il appelle POST /predict directement
|
| 88 |
+
- Il utilise la réponse dans la suite de son raisonnement
|
| 89 |
+
|
| 90 |
+
#### 💡 Cas pratiques
|
| 91 |
+
Differents cas et Réaction attendue de l'agent
|
| 92 |
+
|
| 93 |
+
| Situation réelle | Réaction de l'agent |
|
| 94 |
+
| ----------------------------------------- | ------------------------------------------------------------------------ |
|
| 95 |
+
| L'outil `"SubtitleExtractor"` existe déjà | L'agent appelle directement l'endpoint |
|
| 96 |
+
| Le spec est proche mais pas identique | L'agent peut quand même le réutiliser (avec adaptation) |
|
| 97 |
+
| L'outil existe mais a échoué | L'agent peut **fallback** vers génération d'un nouvel outil MCP |
|
| 98 |
+
| L'outil existe mais est obsolète | Le Registry peut signaler une mise à jour ou déclencher une régénération |
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
#### Fonctions attendues
|
| 102 |
+
|
| 103 |
+
| Classe | Méthode attendue | Présente ? | Commentaire |
|
| 104 |
+
| -------------------- | ------------------------------------------ | ---------- | ----------- |
|
| 105 |
+
| `ManagerAgent` | `run_task(prompt)` | ✅ | OK |
|
| 106 |
+
| `MCPBrainstormer` | `brainstorm(prompt)` | ✅ | OK |
|
| 107 |
+
| `WebAgent` | `search_github`, `retrieve_readme` | ✅ | OK |
|
| 108 |
+
| `ScriptGenerator` | `generate_code`, `generate_env_script` | ✅ | OK |
|
| 109 |
+
| `CodeRunner` | `execute`, `setup_environment` | ✅ | OK |
|
| 110 |
+
| `MCPRegistry` | `register_tool`, `list_tools`, `call_tool` | ✅ | OK |
|
| 111 |
+
| `MCPExecutionResult` | attributs `success`, `output`, `logs` | ✅ | OK |
|
| 112 |
+
| `MCPToolSpec` | `name`, `input_schema`, etc. | ✅ | OK |
|
| 113 |
+
|
| 114 |
+
Ici Le ManagerAgent coordonne tout. Il délègue à :
|
| 115 |
+
- MCPBrainstormer → pour générer des specs d'outils.
|
| 116 |
+
- ScriptGenerator → pour générer du code.
|
| 117 |
+
- CodeRunner → pour tester le code.
|
| 118 |
+
- WebAgent → pour récupérer du contexte externe.
|
| 119 |
+
- MCPRegistry → pour enregistrer et réutiliser les outils.
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+

|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
```sh
|
| 126 |
+
plantuml -tsvg README.md
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
<div hidden>
|
| 130 |
+
<details>
|
| 131 |
+
<summary>Voir le script PlantUML</summary>
|
| 132 |
+
```plantuml
|
| 133 |
+
@startuml alitaDiagram
|
| 134 |
+
|
| 135 |
+
skinparam classAttributeIconSize 0
|
| 136 |
+
|
| 137 |
+
' === Classes de données ===
|
| 138 |
+
class TaskPrompt {
|
| 139 |
+
- text: str
|
| 140 |
+
}
|
| 141 |
+
|
| 142 |
+
class MCPToolSpec {
|
| 143 |
+
- name: str
|
| 144 |
+
- input_schema: dict
|
| 145 |
+
- output_schema: dict
|
| 146 |
+
- description: str
|
| 147 |
+
- pseudo_code: str
|
| 148 |
+
- source_hint: str
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
+
class MCPExecutionResult {
|
| 152 |
+
- success: bool
|
| 153 |
+
- output: dict
|
| 154 |
+
- logs: str
|
| 155 |
+
- error_message: str
|
| 156 |
+
}
|
| 157 |
+
|
| 158 |
+
class ToolCall {
|
| 159 |
+
- tool_name: str
|
| 160 |
+
- input_data: dict
|
| 161 |
+
- result: dict
|
| 162 |
+
}
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
' === Agents principaux ===
|
| 166 |
+
class ManagerAgent {
|
| 167 |
+
- brainstormer: MCPBrainstormer
|
| 168 |
+
- web_agent: WebAgent
|
| 169 |
+
- generator: ScriptGenerator
|
| 170 |
+
- runner: CodeRunner
|
| 171 |
+
- registry: MCPRegistry
|
| 172 |
+
+ run_task(prompt: TaskPrompt): dict
|
| 173 |
+
+ check_existing_tool(spec: MCPToolSpec) -> Optional[str]
|
| 174 |
+
}
|
| 175 |
+
|
| 176 |
+
class MCPBrainstormer {
|
| 177 |
+
+ brainstorm(prompt: TaskPrompt): List<MCPToolSpec>
|
| 178 |
+
}
|
| 179 |
+
|
| 180 |
+
class WebAgent {
|
| 181 |
+
+ search_github(query: str): str
|
| 182 |
+
+ retrieve_readme(repo_url: str): str
|
| 183 |
+
}
|
| 184 |
+
|
| 185 |
+
class ScriptGenerator {
|
| 186 |
+
+ generate_code(spec: MCPToolSpec): str
|
| 187 |
+
+ generate_env_script(spec: MCPToolSpec): str
|
| 188 |
+
}
|
| 189 |
+
|
| 190 |
+
class CodeRunner {
|
| 191 |
+
+ execute(script: str): MCPExecutionResult
|
| 192 |
+
+ setup_environment(env_script: str): bool
|
| 193 |
+
}
|
| 194 |
+
|
| 195 |
+
class MCPRegistry {
|
| 196 |
+
+ register_tool(spec: MCPToolSpec, endpoint_url: str): void
|
| 197 |
+
+ list_tools(): List<MCPToolSpec>
|
| 198 |
+
+ call_tool(tool: str): object
|
| 199 |
+
}
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
' === Relations avec types + cardinalités ===
|
| 204 |
+
|
| 205 |
+
' Le Manager reçoit une tâche utilisateur
|
| 206 |
+
TaskPrompt --> "1" ManagerAgent : provides query
|
| 207 |
+
|
| 208 |
+
' Manager appelle le Brainstormer
|
| 209 |
+
ManagerAgent --> "1" MCPBrainstormer : calls
|
| 210 |
+
|
| 211 |
+
' Manager utilise WebAgent
|
| 212 |
+
ManagerAgent "1" <--> "1" WebAgent : queries/answers
|
| 213 |
+
|
| 214 |
+
' Brainstormer appelle ScriptGenerator et CodeRunner
|
| 215 |
+
MCPBrainstormer --> "1" ScriptGenerator : plans
|
| 216 |
+
MCPBrainstormer --> "1" CodeRunner : validates
|
| 217 |
+
|
| 218 |
+
' Manager consulte ou enregistre dans le Registry
|
| 219 |
+
ManagerAgent --> "1" MCPRegistry : checks/updates
|
| 220 |
+
|
| 221 |
+
' Manager construit un plan d'appel d'outils
|
| 222 |
+
ManagerAgent --> "0..*" ToolCall : creates
|
| 223 |
+
|
| 224 |
+
' Brainstormer retourne des MCPToolSpec
|
| 225 |
+
MCPBrainstormer --> "1..*" MCPToolSpec : returns
|
| 226 |
+
|
| 227 |
+
' ScriptGenerator utilise MCPToolSpec pour générer
|
| 228 |
+
ScriptGenerator --> "1" MCPToolSpec : consumes
|
| 229 |
+
|
| 230 |
+
' Registry enregistre des ToolSpecs
|
| 231 |
+
MCPRegistry --> "0..*" MCPToolSpec : stores
|
| 232 |
+
|
| 233 |
+
' CodeRunner renvoie un résultat d'exécution
|
| 234 |
+
CodeRunner --> "1" MCPExecutionResult : returns
|
| 235 |
+
|
| 236 |
+
' CodeRunner peut utiliser des outils enregistrés
|
| 237 |
+
CodeRunner --> "0..*" MCPRegistry : queries
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
@enduml
|
| 241 |
+
```
|
| 242 |
+
</details>
|
| 243 |
+
</div>
|
| 244 |
+
|
| 245 |
+
# ALITA Research Functionality
|
| 246 |
+
|
| 247 |
+
This README explains how to use the comprehensive research capabilities of the ALITA ManagerAgent.
|
| 248 |
+
|
| 249 |
+
## Overview
|
| 250 |
+
|
| 251 |
+
ALITA can now perform deep, autonomous web research using the WebAgent's research functionality. This allows ALITA to gather information from multiple sources, analyze it, and synthesize a comprehensive report on any topic.
|
| 252 |
+
|
| 253 |
+
## Usage Methods
|
| 254 |
+
|
| 255 |
+
There are two ways to use the research functionality:
|
| 256 |
+
|
| 257 |
+
### 1. Direct Research Method
|
| 258 |
+
|
| 259 |
+
Call the `research` method directly on the ManagerAgent instance:
|
| 260 |
+
|
| 261 |
+
```python
|
| 262 |
+
from manager_agent import ManagerAgent
|
| 263 |
+
from llama_index.llms.anthropic import Anthropic
|
| 264 |
+
|
| 265 |
+
# Initialize the LLM and ManagerAgent
|
| 266 |
+
llm = Anthropic(model="claude-3-5-sonnet-20241022", api_key="your-api-key")
|
| 267 |
+
manager = ManagerAgent(llm=llm)
|
| 268 |
+
|
| 269 |
+
# Perform research directly
|
| 270 |
+
report = manager.research(
|
| 271 |
+
query="What are the latest developments in quantum computing?",
|
| 272 |
+
max_iterations=50, # Optional: limit the number of research steps
|
| 273 |
+
verbose=True # Optional: show detailed progress
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
# The report variable now contains a comprehensive research report
|
| 277 |
+
print(report)
|
| 278 |
+
```
|
| 279 |
+
|
| 280 |
+
### 2. Tool-Based Research through ReActAgent
|
| 281 |
+
|
| 282 |
+
Let the ManagerAgent's internal ReActAgent decide when to use research:
|
| 283 |
+
|
| 284 |
+
```python
|
| 285 |
+
from manager_agent import ManagerAgent
|
| 286 |
+
from models import TaskPrompt
|
| 287 |
+
from llama_index.llms.anthropic import Anthropic
|
| 288 |
+
|
| 289 |
+
# Initialize the LLM and ManagerAgent
|
| 290 |
+
llm = Anthropic(model="claude-3-5-sonnet-20241022", api_key="your-api-key")
|
| 291 |
+
manager = ManagerAgent(llm=llm)
|
| 292 |
+
|
| 293 |
+
# Create a task prompt
|
| 294 |
+
task_prompt = TaskPrompt(text="I need a comprehensive report on recent developments in quantum computing.")
|
| 295 |
+
|
| 296 |
+
# Run the task through the agent
|
| 297 |
+
response = manager.run_task(task_prompt)
|
| 298 |
+
|
| 299 |
+
# The response will include the research report if the agent determined research was needed
|
| 300 |
+
print(response)
|
| 301 |
+
```
|
| 302 |
+
|
| 303 |
+
The agent will automatically detect when deep research is required based on keywords like "comprehensive," "thorough," "research," etc.
|
| 304 |
+
|
| 305 |
+
## Running the Test Script
|
| 306 |
+
|
| 307 |
+
A test script is provided to demonstrate both usage methods:
|
| 308 |
+
|
| 309 |
+
```bash
|
| 310 |
+
python test_research.py
|
| 311 |
+
```
|
| 312 |
+
|
| 313 |
+
Make sure to set your Anthropic API key in the environment or in a `.env` file before running the script.
|
| 314 |
+
|
| 315 |
+
## System Prompt Configuration
|
| 316 |
+
|
| 317 |
+
The ManagerAgent's system prompt has been updated to include guidance on when to use the research tool:
|
| 318 |
+
|
| 319 |
+
- For simple information needs: use 'web_search' for quick answers
|
| 320 |
+
- For complex research topics: use 'perform_web_research' for comprehensive autonomous research
|
| 321 |
+
|
| 322 |
+
## How Research Works
|
| 323 |
+
|
| 324 |
+
When ALITA performs research:
|
| 325 |
+
|
| 326 |
+
1. It first analyzes the research query to understand what information is needed
|
| 327 |
+
2. It uses web search to gather relevant sources
|
| 328 |
+
3. It visits and reads the content of each source
|
| 329 |
+
4. It downloads and analyzes relevant documents if needed
|
| 330 |
+
5. It evaluates the credibility and relevance of each source
|
| 331 |
+
6. It synthesizes the information into a comprehensive report
|
| 332 |
+
7. It includes citations and references to the sources used
|
| 333 |
+
|
| 334 |
+
This enables ALITA to provide high-quality, well-researched answers to complex questions.
|
| 335 |
|
| 336 |
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|