File size: 31,728 Bytes
bbd79d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
import uuid
import os
from dotenv import load_dotenv
from typing import Optional, Dict, Any, List, Generator, Callable
from models import TaskPrompt, MCPToolSpec, MCPExecutionResult
from components import (
    WebAgent,
    ScriptGenerator,
    CodeRunner,
    Registry,
    Brainstormer,
)
from llama_index.core.llms import LLM
from llama_index.core.agent import ReActAgent
from llama_index.core.tools import FunctionTool


# Load environment variables from .env file
load_dotenv()

class ManagerAgent:
    """
    The central orchestrator of the Alita agent - Revised for Gradio integration.
    
    Workflow:
    1. Analyze user prompt to understand the request
    2. Check existing tools in registry first
    3. If research needed, formulate search queries and use WebAgent
    4. If tool needed but not found, brainstorm new tool requirements
    5. Search for open source tools/solutions via WebAgent
    6. Create implementation plan via Brainstormer
    7. Return comprehensive response
    """
    
    def __init__(self, llm: LLM, max_iterations: int = 10000000, update_callback: Optional[Callable[[str], None]] = None):
        
        
        self.llm = llm
        self.registry = Registry()
        self.web_agent = WebAgent(llm=llm, max_research_iterations=10000000)
        self.code_runner = CodeRunner()
        self.brainstormer = Brainstormer(model_name="claude-sonnet-4-0")
        self.script_generator = ScriptGenerator(task_prompt="", claude_api_key=os.getenv("CLAUDE_API_KEY", ""))
        self.max_iterations = max_iterations
        self.update_callback = update_callback

        # Define the tools available to the internal LlamaIndex Agent
        self._agent_tools = self._define_agent_tools()

        # Initialize the internal LlamaIndex ReAct Agent with improved system prompt
        self.agent = ReActAgent.from_tools(
            tools=self._agent_tools,
            llm=self.llm,
            verbose=True,
            system_prompt=self._get_system_prompt(),
            max_iterations=self.max_iterations,  # Use the configurable max_iterations parameter
            temperature=0.2  # Lower temperature for more focused responses
        )
        print("πŸ€– ManagerAgent initialized with ReActAgent and enhanced workflow (temperature=0.2).")

    def send_update(self, message: str) -> None:
        """
        Send an update message to the user about the agent's progress.
        """
        if not any(emoji in message[:2] for emoji in ["πŸ“’", "πŸ”„", "βœ…", "❌", "⚠️", "πŸ’¬", "πŸ”", "πŸš€", "✨"]):
            message = f"πŸ“’ {message}"
            
        print(f"πŸ“£ AGENT: ManagerAgent.send_update CALLED with message: {message}") # DEBUG
        print(f"πŸ“£ AGENT: self.update_callback is: {self.update_callback}") # DEBUG
        
        if self.update_callback:
            try:
                self.update_callback(message) # This should call update_status_callback in app.py
                print(f"πŸ“£ AGENT: Callback invoked successfully.") # DEBUG
            except Exception as e:
                print(f"❌ AGENT: Error sending update via callback: {e}")
                import traceback
                traceback.print_exc()
        else:
            print("πŸ“£ AGENT: No update_callback configured for ManagerAgent.") # DEBUG
        # Return a string confirmation, as ReAct tools often expect a string output
        return f"Update sent: {message}" # MODIFICATION: Return a string

    def _get_system_prompt(self) -> str:
        """Enhanced system prompt for better workflow orchestration"""
        return """You are ALITA, an advanced generalist agent. You are here to help people with their requests. You can do many tasks like research, tool creation, automation, analysis, and much more. What is unique about you is that you can create tools to help people with their requests, even if they are not in your capabilities.

Your primary workflow for ANY user request:

1.  **ANALYZE PHASE**:
    *   Understand the user's request deeply.
    *   Identify if it's: an information request, a tool request, task automation, research, or creative work.
    *   Decide whether to answer the request directly, create a new tool, or perform web research.
    *   If you decide to answer directly, provide your answer right away.
    *   If you decide to perform web research, use the `perform_web_research` tool with specific queries. Inform the user you are starting research before taking this action.
    *   If the task requires more than simple text generation or basic web research, proceed to check for existing tools.
    *   Use `send_user_update` to inform the user about what you're doing and your progress if you don't answer directly.
    *   Do not apologize for not being able to answer the prompt until you have attempted all subsequent steps (EXISTING TOOLS CHECK, TOOL ANALYSIS PHASE, RESEARCH PHASE, TOOL CREATION PHASE). If all fail, then apologize.

2.  **EXISTING TOOLS CHECK**:
    *   ALWAYS first use `get_available_tools` to list all tools in your registry.
    *   If suitable tools exist but are not deployed (check their 'state'), use `deploy_tool` to activate them.
    *   Once tools are active and deployed, use `use_registry_tool` to execute them with the necessary inputs.
    *   Keep the user informed of your progress with `send_user_update`.

3.  **TOOL ANALYSIS PHASE**:
    *   If you need to determine whether existing tools are sufficient or new tools are needed, use `brainstorm_tools`.
    *   Provide the `brainstorm_tools` function with the `user_task` and the `available_tools` (a comma-separated string of tool names from `get_available_tools`).
    *   If there are no tools available, provide "none" as the input for `available_tools` to the `brainstorm_tools` function.
    *   Follow the recommendations from the brainstorming phase.
    *   Send an update to the user with `send_user_update` about your findings.

4.  **RESEARCH PHASE** (if needed for information or tool creation):
    *   Use the `perform_web_research` tool for all web-based information gathering.
        *   For general information or in-depth research on a topic, provide a clear query to `perform_web_research`.
        *   If you are looking for open-source code, libraries, or technical solutions (including from GitHub), instruct `perform_web_research` in your query to focus on finding code examples or repositories. For instance: "perform_web_research: Find Python code snippets for parsing CSV files from GitHub."
    *   Send updates to the user with `send_user_update` about your research progress.

5.  **TOOL CREATION PHASE** (if no existing tool works or can be adapted):
    *   First, use `brainstorm_tools` to define the specifications of the new tool needed.
    *   Next, use `perform_web_research` to find existing open-source solutions, code examples, or libraries that can help build the tool. Be specific in your query to `perform_web_research` about looking for implementation details.
    *   Then, use `generate_mcp_script` to create the Python code and environment script for the tool, using the specification from `brainstorm_tools` and insights from your research.
    *   Finally, use `execute_and_register_mcp` to test the new tool in a safe environment and, if successful, register it in your tool registry.
    *   Keep the user informed of your progress with `send_user_update`.

6.  **EXECUTION PHASE** (after a tool is ready, either existing or newly created):
    *   Ensure the required tool is deployed using `deploy_tool` if it's not already active.
    *   Use `use_registry_tool` to run the active tool with the appropriate inputs.
    *   Provide comprehensive results with explanations.
    *   Send a final update to the user with `send_user_update` about the results.

**Key Principles**:
*   Be proactive in tool discovery and creation.
*   Always search for existing solutions before creating new ones.
*   Provide detailed explanations of your reasoning process.
*   Focus on practical, actionable results.
*   Leverage open-source resources extensively via `perform_web_research`.
*   Keep the user informed of your progress with regular updates using `send_user_update`.

**Tool Management Capabilities**:
*   Use `get_available_tools` to see all tools in your registry.
*   Use `brainstorm_tools` to analyze if existing tools are sufficient or new ones are needed.
*   Check tool 'state' from `get_available_tools` to determine if they are active ('activated' or similar) or inactive.
*   Use `deploy_tool` to activate any inactive tools before running them. Tools must be deployed before they can be executed by `use_registry_tool`.

**Response Style**:
*   Structure your responses clearly with headers where appropriate.
*   Explain what you're doing and why.
*   Provide context and next steps.
*   Be conversational but informative.
*   Use `send_user_update` to keep the user informed throughout the process.
"""

    def _define_agent_tools(self) -> List[FunctionTool]:
        """Enhanced tool definition with better descriptions"""
        tools = []

        # User update tool
        tools.append(
            FunctionTool.from_defaults(
                self.send_update,
                name="send_user_update",
                description="Send an update message to the user about your current progress or actions. Takes 'message' (string) containing the update information. Use this tool frequently to keep the user informed about what you're doing."
            )
        )
        
        # Add research tool
        tools.append(
            FunctionTool.from_defaults(
                self.research,
                name="perform_web_research",
                description="Performs comprehensive web research on a given topic. Takes 'query' (string) containing the research question or topic to investigate. Returns a detailed research report with findings and sources."
            )
        )

        # Get all available tools
        tools.append(
            FunctionTool.from_defaults(
                self.get_available_tools,
                name="get_available_tools",
                description="Get a list of all tools currently available in the registry. Returns a list of tool specifications with names, descriptions, and states."
            )
        )

        # Use a registered tool
        tools.append(
            FunctionTool.from_defaults(
                self.use_registry_tool,
                name="use_registry_tool",
                description="Use a registered tool directly by invoking its endpoint. Takes 'tool_name' (string) and any additional arguments required by the tool. Automatically deploys the tool if needed. Returns the response from the tool."
            )
        )

        # Tool brainstorming
        tools.append(
            FunctionTool.from_defaults(
                self.brainstorm_tools,
                name="brainstorm_tools",
                description="Analyze the user request against available tools to determine if existing tools are sufficient or new tools are needed. Takes 'user_task' (string) containing the user's request and optionally 'available_tools' (string) with comma-separated tool names. Returns recommendations on which tools to use or what new tools to create."
            )
        )

        # Deploy a specific tool
        tools.append(
            FunctionTool.from_defaults(
                self.deploy_tool,
                name="deploy_tool",
                description="Deploy and activate a specific tool from the registry. Takes 'tool_name' (string) containing the name of the tool to deploy. Returns the URL of the deployed tool if successful, or an error message if deployment fails."
            )
        )

        # Add analysis tool for better decision making
        tools.append(
            FunctionTool.from_defaults(
                self._analyze_user_request,
                name="analyze_user_request",
                description="Analyze user request to determine the best approach (research, existing tool, new tool creation). Takes 'user_message' (string). Returns analysis with recommended actions."
            )
        )

        return tools

    def _analyze_user_request(self, user_message: str) -> Dict[str, Any]:
        """Analyze user request to determine optimal workflow path"""
        analysis = {
            "request_type": "unknown",
            "complexity": "medium",
            "requires_research": False,
            "requires_tools": False,
            "suggested_approach": [],
            "key_concepts": []
        }
        
        message_lower = user_message.lower()
        
        # Look for comprehensive research indicators
        research_terms = ["comprehensive", "thorough", "in-depth", "detailed", "extensive", 
                        "research", "investigate", "analyze", "report", "study"]
        
        # Determine request type
        if any(word in message_lower for word in research_terms):
            analysis["request_type"] = "deep_research"
            analysis["requires_research"] = True
            analysis["complexity"] = "high"
            analysis["suggested_approach"].append("research")
            
        elif any(word in message_lower for word in ["recherche", "search", "find", "lookup", "information", "what is", "explain"]):
            analysis["request_type"] = "information_request"
            analysis["requires_research"] = True
            analysis["suggested_approach"].append("web_search")
            
        elif any(word in message_lower for word in ["outil", "tool", "script", "automatise", "automate", "create", "build"]):
            analysis["request_type"] = "tool_request"
            analysis["requires_tools"] = True
            analysis["suggested_approach"].extend(["find_existing_tools", "brainstorm_if_needed"])
            
        elif any(word in message_lower for word in ["analyse", "analyze", "process", "calculate", "compute"]):
            analysis["request_type"] = "analysis_task"
            analysis["requires_tools"] = True
            analysis["suggested_approach"].extend(["find_existing_tools", "research_methods"])
            
        elif any(word in message_lower for word in ["tendance", "trend", "market", "news", "current"]):
            analysis["request_type"] = "research_task"
            analysis["requires_research"] = True
            analysis["complexity"] = "high"
            analysis["suggested_approach"].extend(["web_search", "github_search"])

        # Extract key concepts for better tool matching
        concepts = []
        tech_keywords = ["python", "javascript", "api", "database", "csv", "json", "web", "scraping", "ml", "ai"]
        for keyword in tech_keywords:
            if keyword in message_lower:
                concepts.append(keyword)
        analysis["key_concepts"] = concepts
        
        return analysis

    def _run_and_register_mcp(self, spec: Dict[str, Any], python_script: str, env_script: str, input_data: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
        """Enhanced MCP execution and registration with better error handling"""
        print(f"πŸ”§ ManagerAgent: Executing and registering MCP: {spec.get('name', 'Unnamed Tool')}")
        
        try:
            mcp_spec_obj = MCPToolSpec.from_dict(spec)
            env_name_suffix = mcp_spec_obj.name.lower().replace(' ', '-')[:10]
            env_name = f"alita-{env_name_suffix}-{uuid.uuid4().hex[:8]}"

            print(f"πŸ”„ Setting up environment: {env_name}")
            env_success = self.code_runner.setup_environment(env_script, env_name)
            
            if not env_success:
                result = MCPExecutionResult(
                    success=False, 
                    error_message=f"Environment setup failed for '{env_name}'. Check dependencies in env_script."
                )
                return result.to_dict()

            print(f"▢️ Executing script in environment: {env_name}")
            execution_result = self.code_runner.execute(python_script, env_name, input_data)

            if execution_result.success:
                print(f"βœ… Script execution successful. Registering tool: {mcp_spec_obj.name}")
                mcp_spec_obj.validated_script = python_script
                mcp_spec_obj.environment_script = env_script
                self.registry.register_tool(mcp_spec_obj)
                print(f"🎯 Tool '{mcp_spec_obj.name}' successfully registered in registry")
                
                # Add success message to result
                execution_result.output_data = execution_result.output_data or {}
                execution_result.output_data["registration_status"] = "Successfully registered"
                
            else:
                print(f"❌ Script execution failed for '{mcp_spec_obj.name}': {execution_result.error_message}")

            # Always cleanup after validation
            self.code_runner.cleanup_environment(env_name)
            return execution_result.to_dict()

        except Exception as e:
            error_msg = f"Unexpected error in MCP execution: {str(e)}"
            print(f"🚨 {error_msg}")
            
            # Cleanup on error
            try:
                if 'env_name' in locals():
                    self.code_runner.cleanup_environment(env_name)
            except:
                pass
                
            return MCPExecutionResult(success=False, error_message=error_msg).to_dict()

    def _run_registered_mcp(self, tool_name: str, input_data: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
        """Enhanced registered tool execution with better logging"""
        print(f"🎯 ManagerAgent: Running registered tool: {tool_name}")
        
        spec = self.registry.get_tool(tool_name)
        if not spec:
            error_msg = f"Tool '{tool_name}' not found in registry. Available tools: {list(self.registry.tools.keys())}"
            print(f"❌ {error_msg}")
            return MCPExecutionResult(success=False, error_message=error_msg).to_dict()

        if not spec.validated_script or not spec.environment_script:
            error_msg = f"Tool '{tool_name}' missing validated script or environment configuration"
            print(f"❌ {error_msg}")
            return MCPExecutionResult(success=False, error_message=error_msg).to_dict()

        # Create fresh environment for execution
        env_name_suffix = spec.name.lower().replace(' ', '-')[:10]
        env_name = f"alita-run-{env_name_suffix}-{uuid.uuid4().hex[:8]}"

        try:
            print(f"πŸ”„ Setting up execution environment: {env_name}")
            env_success = self.code_runner.setup_environment(spec.environment_script, env_name)
            
            if not env_success:
                return MCPExecutionResult(
                    success=False, 
                    error_message=f"Failed to setup environment for tool '{tool_name}'"
                ).to_dict()

            print(f"▢️ Executing registered tool: {tool_name}")
            execution_result = self.code_runner.execute(spec.validated_script, env_name, input_data)
            
            print(f"{'βœ…' if execution_result.success else '❌'} Tool execution completed. Success: {execution_result.success}")
            
            return execution_result.to_dict()
            
        except Exception as e:
            error_msg = f"Error executing registered tool '{tool_name}': {str(e)}"
            print(f"🚨 {error_msg}")
            return MCPExecutionResult(success=False, error_message=error_msg).to_dict()
            
        finally:
            # Always cleanup
            try:
                self.code_runner.cleanup_environment(env_name)
            except:
                pass

    def run_task(self, prompt: TaskPrompt) -> str:
        """
        Enhanced task execution with detailed logging and structured workflow
        Optimized for Gradio integration with comprehensive responses
        """
        print(f"\n{'='*60}")
        print(f"πŸš€ ALITA ManagerAgent: Starting task execution")
        print(f"πŸ“ User prompt: {prompt.text[:100]}{'...' if len(prompt.text) > 100 else ''}")
        print(f"{'='*60}")

        # Send initial update to the user
        self.send_update(f"Starting to process your request: '{prompt.text[:50]}{'...' if len(prompt.text) > 50 else ''}'")

        try:
            # Use the internal ReAct agent to handle the complete workflow
            print("🧠 Engaging ReAct Agent for intelligent task orchestration...")
            
            # The ReAct agent will use its tools to:
            # 1. Analyze the request
            # 2. Search existing tools
            # 3. Perform web research if needed
            # 4. Brainstorm solutions
            # 5. Create/execute tools as necessary
            # 6. Provide comprehensive response
            
            response = self.agent.chat(prompt.text)
            
            print("βœ… Task execution completed successfully")
            print(f"{'='*60}\n")
            
            # Send final update to the user
            self.send_update("Task completed successfully! Here's your response.")
            
            # Format response for better Gradio presentation
            formatted_response = self._format_response_for_gradio(response.response)
            return formatted_response
            
        except Exception as e:
            error_msg = f"🚨 ManagerAgent encountered an error during task execution:\n\n**Error Details:**\n{str(e)}\n\n**Next Steps:**\n- Check your API key and network connection\n- Verify all components are properly initialized\n- Try a simpler request to test basic functionality"
            
            print(f"❌ Task execution failed: {e}")
            print(f"{'='*60}\n")
            
            # Send error update to the user
            self.send_update(f"An error occurred while processing your request: {str(e)}")
            
            return error_msg

    def _format_response_for_gradio(self, response: str) -> str:
        """Format the agent response for better presentation in Gradio"""
        
        # Add header if not present
        if not response.startswith("##") and not response.startswith("#"):
            response = f"## πŸ€– {response}"
        
        
            
        return response

    def get_registry_status(self) -> Dict[str, Any]:
        """Get current status of the tool registry"""
        return {
            "total_tools": len(self.registry.tools),
            "tool_names": list(self.registry.tools.keys()),
            "registry_ready": len(self.registry.tools) > 0
        }

    def reset_registry(self):
        """Reset the tool registry (useful for testing)"""
        self.registry = Registry()
        print("πŸ”„ Tool registry has been reset")

    def __str__(self):
        return f"ManagerAgent(llm={type(self.llm).__name__}, tools_registered={len(self.registry.tools)})"

    def research(self, query: str, max_iterations: int = None, verbose: bool = None) -> str:
        """
        Performs autonomous web research on the given query using the WebAgent's research function.
        
        Args:
            query: The research question or topic
            max_iterations: Optional override for the maximum number of research iterations
            verbose: Optional override for verbose mode
            
        Returns:
            A comprehensive textual report based on web research
        """
        print(f"\n{'='*60}")
        print(f"🌐 ALITA ManagerAgent: Starting web research")
        print(f"πŸ“ Research query: {query[:100]}{'...' if len(query) > 100 else ''}")
        print(f"{'='*60}")
        
        try:
            # Configure WebAgent for this research session
            if max_iterations is not None:
                self.web_agent.max_research_iterations = max_iterations
            
            if verbose is not None:
                self.web_agent.verbose = verbose
            
            # Perform the research
            print("πŸ” Initiating autonomous web research. This may take some time... here is the query: ", query)
            report = self.web_agent.research(query)
            print("πŸ” here is the report: ", report)
            
            print("βœ… Research completed successfully")
            print(f"{'='*60}\n")
            
            return report
            
        except Exception as e:
            error_msg = f"🚨 Error during web research: {str(e)}"
            print(f"❌ Research failed: {e}")
            print(f"{'='*60}\n")
            
            import traceback
            print(traceback.format_exc())
            
            return error_msg

    def get_available_tools(self) -> List[Dict[str, Any]]:
        """
        Get a list of all tools currently available in the registry.
        
        Returns:
            List of dictionaries containing tool information (name, description, state)
        """
        print("πŸ“‹ ManagerAgent: Retrieving list of all available tools")
        tools = self.registry.list_tools()
        
        # Format the tools for easier consumption by the agent
        formatted_tools = []
        for tool in tools:
            formatted_tools.append({
                "name": tool.name,
                "description": tool.description,
                "state": getattr(tool, "state", "unknown"),
                "input_schema": tool.input_schema if hasattr(tool, "input_schema") else {},
                "output_schema": tool.output_schema if hasattr(tool, "output_schema") else {}
            })
            
        print(f"πŸ” Found {len(formatted_tools)} tools in registry")
        return formatted_tools
    
    def deploy_tool(self, tool_name: str) -> Dict[str, Any]:
        """
        Deploy and activate a specific tool from the registry.
        
        Args:
            tool_name: Name of the tool to deploy
            
        Returns:
            Dictionary with deployment status and URL (if successful)
        """
        print(f"πŸš€ ManagerAgent: Deploying tool '{tool_name}'")
        
        # Check if tool exists in registry
        if not self.registry.get_tool(tool_name):
            error_msg = f"Tool '{tool_name}' not found in registry"
            print(f"❌ {error_msg}")
            return {"success": False, "error": error_msg}
        
        # Attempt to deploy the tool
        try:
            url = self.registry.deploy_tool(tool_name)
            
            if url:
                print(f"βœ… Successfully deployed tool '{tool_name}' at {url}")
                return {
                    "success": True,
                    "tool_name": tool_name,
                    "url": url,
                    "message": f"Tool '{tool_name}' successfully deployed"
                }
            else:
                error_msg = f"Failed to deploy tool '{tool_name}'"
                print(f"❌ {error_msg}")
                return {"success": False, "error": error_msg}
                
        except Exception as e:
            error_msg = f"Error deploying tool '{tool_name}': {str(e)}"
            print(f"🚨 {error_msg}")
            return {"success": False, "error": error_msg}

    def brainstorm_tools(self, user_task: str, available_tools: str = "") -> Dict[str, Any]:
        """
        Use the Brainstormer to analyze if existing tools are sufficient or new tools are needed.
        
        Args:
            user_task: The user's request or task
            available_tools: Optional comma-separated list of available tool names
            
        Returns:
            Dictionary with tool recommendations or specifications for new tools
        """
        print(f"🧠 ManagerAgent: Brainstorming tools for task: {user_task[:100]}{'...' if len(user_task) > 100 else ''}")
        
        # If available_tools is not provided, get them from the registry
        if not available_tools:
            tools = self.get_available_tools()
            available_tools = ", ".join([tool["name"] for tool in tools])
        
        try:
            # Call the brainstormer to analyze the task and available tools
            result = self.brainstormer.generate_mcp_specs_to_fulfill_user_task(
                task=user_task,
                tools_list=available_tools
            )
            
            if isinstance(result, dict) and "error" in result:
                print(f"❌ Brainstorming failed: {result['error']}")
                return {
                    "success": False,
                    "error": result["error"],
                    "recommendations": "Unable to analyze tools for this task."
                }
                
            print(f"βœ… Brainstorming complete. Found {len(result)} tool recommendations.")
            
            # Format the result for better consumption by the agent
            return {
                "success": True,
                "recommendations": result,
                "summary": f"Analysis complete. Found {len(result)} tool recommendations."
            }
            
        except Exception as e:
            error_msg = f"Error during tool brainstorming: {str(e)}"
            print(f"🚨 {error_msg}")
            return {
                "success": False,
                "error": error_msg,
                "recommendations": "Unable to analyze tools due to an error."
            }

    def use_registry_tool(self, tool_name: str, *args, **kwargs) -> Dict[str, Any]:
        """
        Use a registered tool directly by invoking its endpoint.
        
        This method utilizes the Registry's use_tool method to invoke a registered tool.
        It handles tool deployment if needed and provides proper error handling and user feedback.
        
        Args:
            tool_name: Name of the tool to use
            *args: Positional arguments to pass to the tool
            **kwargs: Keyword arguments to pass to the tool
            
        Returns:
            The response from the tool as a Python object
        """
        try:
            # Send update to user
            self.send_update(f"Using tool: {tool_name}")
            
            # Check if tool exists in registry
            if not self.registry.get_tool(tool_name):
                error_msg = f"Tool '{tool_name}' not found in registry"
                self.send_update(error_msg)
                return {"error": error_msg, "success": False}
                
            # Use the tool via Registry's use_tool method
            self.send_update(f"Executing tool: {tool_name}")
            result = self.registry.use_tool(tool_name, *args, **kwargs)
            
            # Send success update
            self.send_update(f"Tool '{tool_name}' executed successfully")
            
            # Return result with success flag
            if isinstance(result, dict):
                result["success"] = True
                return result
            else:
                return {"result": result, "success": True}
                
        except ValueError as e:
            # Handle expected errors (tool not found, deployment failed)
            error_msg = str(e)
            self.send_update(f"Error: {error_msg}")
            return {"error": error_msg, "success": False}
            
        except Exception as e:
            # Handle unexpected errors
            error_msg = f"Unexpected error using tool '{tool_name}': {str(e)}"
            self.send_update(f"Error: {error_msg}")
            return {"error": error_msg, "success": False}