Spaces:
Runtime error
Runtime error
File size: 31,728 Bytes
bbd79d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 |
import uuid
import os
from dotenv import load_dotenv
from typing import Optional, Dict, Any, List, Generator, Callable
from models import TaskPrompt, MCPToolSpec, MCPExecutionResult
from components import (
WebAgent,
ScriptGenerator,
CodeRunner,
Registry,
Brainstormer,
)
from llama_index.core.llms import LLM
from llama_index.core.agent import ReActAgent
from llama_index.core.tools import FunctionTool
# Load environment variables from .env file
load_dotenv()
class ManagerAgent:
"""
The central orchestrator of the Alita agent - Revised for Gradio integration.
Workflow:
1. Analyze user prompt to understand the request
2. Check existing tools in registry first
3. If research needed, formulate search queries and use WebAgent
4. If tool needed but not found, brainstorm new tool requirements
5. Search for open source tools/solutions via WebAgent
6. Create implementation plan via Brainstormer
7. Return comprehensive response
"""
def __init__(self, llm: LLM, max_iterations: int = 10000000, update_callback: Optional[Callable[[str], None]] = None):
self.llm = llm
self.registry = Registry()
self.web_agent = WebAgent(llm=llm, max_research_iterations=10000000)
self.code_runner = CodeRunner()
self.brainstormer = Brainstormer(model_name="claude-sonnet-4-0")
self.script_generator = ScriptGenerator(task_prompt="", claude_api_key=os.getenv("CLAUDE_API_KEY", ""))
self.max_iterations = max_iterations
self.update_callback = update_callback
# Define the tools available to the internal LlamaIndex Agent
self._agent_tools = self._define_agent_tools()
# Initialize the internal LlamaIndex ReAct Agent with improved system prompt
self.agent = ReActAgent.from_tools(
tools=self._agent_tools,
llm=self.llm,
verbose=True,
system_prompt=self._get_system_prompt(),
max_iterations=self.max_iterations, # Use the configurable max_iterations parameter
temperature=0.2 # Lower temperature for more focused responses
)
print("π€ ManagerAgent initialized with ReActAgent and enhanced workflow (temperature=0.2).")
def send_update(self, message: str) -> None:
"""
Send an update message to the user about the agent's progress.
"""
if not any(emoji in message[:2] for emoji in ["π’", "π", "β
", "β", "β οΈ", "π¬", "π", "π", "β¨"]):
message = f"π’ {message}"
print(f"π£ AGENT: ManagerAgent.send_update CALLED with message: {message}") # DEBUG
print(f"π£ AGENT: self.update_callback is: {self.update_callback}") # DEBUG
if self.update_callback:
try:
self.update_callback(message) # This should call update_status_callback in app.py
print(f"π£ AGENT: Callback invoked successfully.") # DEBUG
except Exception as e:
print(f"β AGENT: Error sending update via callback: {e}")
import traceback
traceback.print_exc()
else:
print("π£ AGENT: No update_callback configured for ManagerAgent.") # DEBUG
# Return a string confirmation, as ReAct tools often expect a string output
return f"Update sent: {message}" # MODIFICATION: Return a string
def _get_system_prompt(self) -> str:
"""Enhanced system prompt for better workflow orchestration"""
return """You are ALITA, an advanced generalist agent. You are here to help people with their requests. You can do many tasks like research, tool creation, automation, analysis, and much more. What is unique about you is that you can create tools to help people with their requests, even if they are not in your capabilities.
Your primary workflow for ANY user request:
1. **ANALYZE PHASE**:
* Understand the user's request deeply.
* Identify if it's: an information request, a tool request, task automation, research, or creative work.
* Decide whether to answer the request directly, create a new tool, or perform web research.
* If you decide to answer directly, provide your answer right away.
* If you decide to perform web research, use the `perform_web_research` tool with specific queries. Inform the user you are starting research before taking this action.
* If the task requires more than simple text generation or basic web research, proceed to check for existing tools.
* Use `send_user_update` to inform the user about what you're doing and your progress if you don't answer directly.
* Do not apologize for not being able to answer the prompt until you have attempted all subsequent steps (EXISTING TOOLS CHECK, TOOL ANALYSIS PHASE, RESEARCH PHASE, TOOL CREATION PHASE). If all fail, then apologize.
2. **EXISTING TOOLS CHECK**:
* ALWAYS first use `get_available_tools` to list all tools in your registry.
* If suitable tools exist but are not deployed (check their 'state'), use `deploy_tool` to activate them.
* Once tools are active and deployed, use `use_registry_tool` to execute them with the necessary inputs.
* Keep the user informed of your progress with `send_user_update`.
3. **TOOL ANALYSIS PHASE**:
* If you need to determine whether existing tools are sufficient or new tools are needed, use `brainstorm_tools`.
* Provide the `brainstorm_tools` function with the `user_task` and the `available_tools` (a comma-separated string of tool names from `get_available_tools`).
* If there are no tools available, provide "none" as the input for `available_tools` to the `brainstorm_tools` function.
* Follow the recommendations from the brainstorming phase.
* Send an update to the user with `send_user_update` about your findings.
4. **RESEARCH PHASE** (if needed for information or tool creation):
* Use the `perform_web_research` tool for all web-based information gathering.
* For general information or in-depth research on a topic, provide a clear query to `perform_web_research`.
* If you are looking for open-source code, libraries, or technical solutions (including from GitHub), instruct `perform_web_research` in your query to focus on finding code examples or repositories. For instance: "perform_web_research: Find Python code snippets for parsing CSV files from GitHub."
* Send updates to the user with `send_user_update` about your research progress.
5. **TOOL CREATION PHASE** (if no existing tool works or can be adapted):
* First, use `brainstorm_tools` to define the specifications of the new tool needed.
* Next, use `perform_web_research` to find existing open-source solutions, code examples, or libraries that can help build the tool. Be specific in your query to `perform_web_research` about looking for implementation details.
* Then, use `generate_mcp_script` to create the Python code and environment script for the tool, using the specification from `brainstorm_tools` and insights from your research.
* Finally, use `execute_and_register_mcp` to test the new tool in a safe environment and, if successful, register it in your tool registry.
* Keep the user informed of your progress with `send_user_update`.
6. **EXECUTION PHASE** (after a tool is ready, either existing or newly created):
* Ensure the required tool is deployed using `deploy_tool` if it's not already active.
* Use `use_registry_tool` to run the active tool with the appropriate inputs.
* Provide comprehensive results with explanations.
* Send a final update to the user with `send_user_update` about the results.
**Key Principles**:
* Be proactive in tool discovery and creation.
* Always search for existing solutions before creating new ones.
* Provide detailed explanations of your reasoning process.
* Focus on practical, actionable results.
* Leverage open-source resources extensively via `perform_web_research`.
* Keep the user informed of your progress with regular updates using `send_user_update`.
**Tool Management Capabilities**:
* Use `get_available_tools` to see all tools in your registry.
* Use `brainstorm_tools` to analyze if existing tools are sufficient or new ones are needed.
* Check tool 'state' from `get_available_tools` to determine if they are active ('activated' or similar) or inactive.
* Use `deploy_tool` to activate any inactive tools before running them. Tools must be deployed before they can be executed by `use_registry_tool`.
**Response Style**:
* Structure your responses clearly with headers where appropriate.
* Explain what you're doing and why.
* Provide context and next steps.
* Be conversational but informative.
* Use `send_user_update` to keep the user informed throughout the process.
"""
def _define_agent_tools(self) -> List[FunctionTool]:
"""Enhanced tool definition with better descriptions"""
tools = []
# User update tool
tools.append(
FunctionTool.from_defaults(
self.send_update,
name="send_user_update",
description="Send an update message to the user about your current progress or actions. Takes 'message' (string) containing the update information. Use this tool frequently to keep the user informed about what you're doing."
)
)
# Add research tool
tools.append(
FunctionTool.from_defaults(
self.research,
name="perform_web_research",
description="Performs comprehensive web research on a given topic. Takes 'query' (string) containing the research question or topic to investigate. Returns a detailed research report with findings and sources."
)
)
# Get all available tools
tools.append(
FunctionTool.from_defaults(
self.get_available_tools,
name="get_available_tools",
description="Get a list of all tools currently available in the registry. Returns a list of tool specifications with names, descriptions, and states."
)
)
# Use a registered tool
tools.append(
FunctionTool.from_defaults(
self.use_registry_tool,
name="use_registry_tool",
description="Use a registered tool directly by invoking its endpoint. Takes 'tool_name' (string) and any additional arguments required by the tool. Automatically deploys the tool if needed. Returns the response from the tool."
)
)
# Tool brainstorming
tools.append(
FunctionTool.from_defaults(
self.brainstorm_tools,
name="brainstorm_tools",
description="Analyze the user request against available tools to determine if existing tools are sufficient or new tools are needed. Takes 'user_task' (string) containing the user's request and optionally 'available_tools' (string) with comma-separated tool names. Returns recommendations on which tools to use or what new tools to create."
)
)
# Deploy a specific tool
tools.append(
FunctionTool.from_defaults(
self.deploy_tool,
name="deploy_tool",
description="Deploy and activate a specific tool from the registry. Takes 'tool_name' (string) containing the name of the tool to deploy. Returns the URL of the deployed tool if successful, or an error message if deployment fails."
)
)
# Add analysis tool for better decision making
tools.append(
FunctionTool.from_defaults(
self._analyze_user_request,
name="analyze_user_request",
description="Analyze user request to determine the best approach (research, existing tool, new tool creation). Takes 'user_message' (string). Returns analysis with recommended actions."
)
)
return tools
def _analyze_user_request(self, user_message: str) -> Dict[str, Any]:
"""Analyze user request to determine optimal workflow path"""
analysis = {
"request_type": "unknown",
"complexity": "medium",
"requires_research": False,
"requires_tools": False,
"suggested_approach": [],
"key_concepts": []
}
message_lower = user_message.lower()
# Look for comprehensive research indicators
research_terms = ["comprehensive", "thorough", "in-depth", "detailed", "extensive",
"research", "investigate", "analyze", "report", "study"]
# Determine request type
if any(word in message_lower for word in research_terms):
analysis["request_type"] = "deep_research"
analysis["requires_research"] = True
analysis["complexity"] = "high"
analysis["suggested_approach"].append("research")
elif any(word in message_lower for word in ["recherche", "search", "find", "lookup", "information", "what is", "explain"]):
analysis["request_type"] = "information_request"
analysis["requires_research"] = True
analysis["suggested_approach"].append("web_search")
elif any(word in message_lower for word in ["outil", "tool", "script", "automatise", "automate", "create", "build"]):
analysis["request_type"] = "tool_request"
analysis["requires_tools"] = True
analysis["suggested_approach"].extend(["find_existing_tools", "brainstorm_if_needed"])
elif any(word in message_lower for word in ["analyse", "analyze", "process", "calculate", "compute"]):
analysis["request_type"] = "analysis_task"
analysis["requires_tools"] = True
analysis["suggested_approach"].extend(["find_existing_tools", "research_methods"])
elif any(word in message_lower for word in ["tendance", "trend", "market", "news", "current"]):
analysis["request_type"] = "research_task"
analysis["requires_research"] = True
analysis["complexity"] = "high"
analysis["suggested_approach"].extend(["web_search", "github_search"])
# Extract key concepts for better tool matching
concepts = []
tech_keywords = ["python", "javascript", "api", "database", "csv", "json", "web", "scraping", "ml", "ai"]
for keyword in tech_keywords:
if keyword in message_lower:
concepts.append(keyword)
analysis["key_concepts"] = concepts
return analysis
def _run_and_register_mcp(self, spec: Dict[str, Any], python_script: str, env_script: str, input_data: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
"""Enhanced MCP execution and registration with better error handling"""
print(f"π§ ManagerAgent: Executing and registering MCP: {spec.get('name', 'Unnamed Tool')}")
try:
mcp_spec_obj = MCPToolSpec.from_dict(spec)
env_name_suffix = mcp_spec_obj.name.lower().replace(' ', '-')[:10]
env_name = f"alita-{env_name_suffix}-{uuid.uuid4().hex[:8]}"
print(f"π Setting up environment: {env_name}")
env_success = self.code_runner.setup_environment(env_script, env_name)
if not env_success:
result = MCPExecutionResult(
success=False,
error_message=f"Environment setup failed for '{env_name}'. Check dependencies in env_script."
)
return result.to_dict()
print(f"βΆοΈ Executing script in environment: {env_name}")
execution_result = self.code_runner.execute(python_script, env_name, input_data)
if execution_result.success:
print(f"β
Script execution successful. Registering tool: {mcp_spec_obj.name}")
mcp_spec_obj.validated_script = python_script
mcp_spec_obj.environment_script = env_script
self.registry.register_tool(mcp_spec_obj)
print(f"π― Tool '{mcp_spec_obj.name}' successfully registered in registry")
# Add success message to result
execution_result.output_data = execution_result.output_data or {}
execution_result.output_data["registration_status"] = "Successfully registered"
else:
print(f"β Script execution failed for '{mcp_spec_obj.name}': {execution_result.error_message}")
# Always cleanup after validation
self.code_runner.cleanup_environment(env_name)
return execution_result.to_dict()
except Exception as e:
error_msg = f"Unexpected error in MCP execution: {str(e)}"
print(f"π¨ {error_msg}")
# Cleanup on error
try:
if 'env_name' in locals():
self.code_runner.cleanup_environment(env_name)
except:
pass
return MCPExecutionResult(success=False, error_message=error_msg).to_dict()
def _run_registered_mcp(self, tool_name: str, input_data: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
"""Enhanced registered tool execution with better logging"""
print(f"π― ManagerAgent: Running registered tool: {tool_name}")
spec = self.registry.get_tool(tool_name)
if not spec:
error_msg = f"Tool '{tool_name}' not found in registry. Available tools: {list(self.registry.tools.keys())}"
print(f"β {error_msg}")
return MCPExecutionResult(success=False, error_message=error_msg).to_dict()
if not spec.validated_script or not spec.environment_script:
error_msg = f"Tool '{tool_name}' missing validated script or environment configuration"
print(f"β {error_msg}")
return MCPExecutionResult(success=False, error_message=error_msg).to_dict()
# Create fresh environment for execution
env_name_suffix = spec.name.lower().replace(' ', '-')[:10]
env_name = f"alita-run-{env_name_suffix}-{uuid.uuid4().hex[:8]}"
try:
print(f"π Setting up execution environment: {env_name}")
env_success = self.code_runner.setup_environment(spec.environment_script, env_name)
if not env_success:
return MCPExecutionResult(
success=False,
error_message=f"Failed to setup environment for tool '{tool_name}'"
).to_dict()
print(f"βΆοΈ Executing registered tool: {tool_name}")
execution_result = self.code_runner.execute(spec.validated_script, env_name, input_data)
print(f"{'β
' if execution_result.success else 'β'} Tool execution completed. Success: {execution_result.success}")
return execution_result.to_dict()
except Exception as e:
error_msg = f"Error executing registered tool '{tool_name}': {str(e)}"
print(f"π¨ {error_msg}")
return MCPExecutionResult(success=False, error_message=error_msg).to_dict()
finally:
# Always cleanup
try:
self.code_runner.cleanup_environment(env_name)
except:
pass
def run_task(self, prompt: TaskPrompt) -> str:
"""
Enhanced task execution with detailed logging and structured workflow
Optimized for Gradio integration with comprehensive responses
"""
print(f"\n{'='*60}")
print(f"π ALITA ManagerAgent: Starting task execution")
print(f"π User prompt: {prompt.text[:100]}{'...' if len(prompt.text) > 100 else ''}")
print(f"{'='*60}")
# Send initial update to the user
self.send_update(f"Starting to process your request: '{prompt.text[:50]}{'...' if len(prompt.text) > 50 else ''}'")
try:
# Use the internal ReAct agent to handle the complete workflow
print("π§ Engaging ReAct Agent for intelligent task orchestration...")
# The ReAct agent will use its tools to:
# 1. Analyze the request
# 2. Search existing tools
# 3. Perform web research if needed
# 4. Brainstorm solutions
# 5. Create/execute tools as necessary
# 6. Provide comprehensive response
response = self.agent.chat(prompt.text)
print("β
Task execution completed successfully")
print(f"{'='*60}\n")
# Send final update to the user
self.send_update("Task completed successfully! Here's your response.")
# Format response for better Gradio presentation
formatted_response = self._format_response_for_gradio(response.response)
return formatted_response
except Exception as e:
error_msg = f"π¨ ManagerAgent encountered an error during task execution:\n\n**Error Details:**\n{str(e)}\n\n**Next Steps:**\n- Check your API key and network connection\n- Verify all components are properly initialized\n- Try a simpler request to test basic functionality"
print(f"β Task execution failed: {e}")
print(f"{'='*60}\n")
# Send error update to the user
self.send_update(f"An error occurred while processing your request: {str(e)}")
return error_msg
def _format_response_for_gradio(self, response: str) -> str:
"""Format the agent response for better presentation in Gradio"""
# Add header if not present
if not response.startswith("##") and not response.startswith("#"):
response = f"## π€ {response}"
return response
def get_registry_status(self) -> Dict[str, Any]:
"""Get current status of the tool registry"""
return {
"total_tools": len(self.registry.tools),
"tool_names": list(self.registry.tools.keys()),
"registry_ready": len(self.registry.tools) > 0
}
def reset_registry(self):
"""Reset the tool registry (useful for testing)"""
self.registry = Registry()
print("π Tool registry has been reset")
def __str__(self):
return f"ManagerAgent(llm={type(self.llm).__name__}, tools_registered={len(self.registry.tools)})"
def research(self, query: str, max_iterations: int = None, verbose: bool = None) -> str:
"""
Performs autonomous web research on the given query using the WebAgent's research function.
Args:
query: The research question or topic
max_iterations: Optional override for the maximum number of research iterations
verbose: Optional override for verbose mode
Returns:
A comprehensive textual report based on web research
"""
print(f"\n{'='*60}")
print(f"π ALITA ManagerAgent: Starting web research")
print(f"π Research query: {query[:100]}{'...' if len(query) > 100 else ''}")
print(f"{'='*60}")
try:
# Configure WebAgent for this research session
if max_iterations is not None:
self.web_agent.max_research_iterations = max_iterations
if verbose is not None:
self.web_agent.verbose = verbose
# Perform the research
print("π Initiating autonomous web research. This may take some time... here is the query: ", query)
report = self.web_agent.research(query)
print("π here is the report: ", report)
print("β
Research completed successfully")
print(f"{'='*60}\n")
return report
except Exception as e:
error_msg = f"π¨ Error during web research: {str(e)}"
print(f"β Research failed: {e}")
print(f"{'='*60}\n")
import traceback
print(traceback.format_exc())
return error_msg
def get_available_tools(self) -> List[Dict[str, Any]]:
"""
Get a list of all tools currently available in the registry.
Returns:
List of dictionaries containing tool information (name, description, state)
"""
print("π ManagerAgent: Retrieving list of all available tools")
tools = self.registry.list_tools()
# Format the tools for easier consumption by the agent
formatted_tools = []
for tool in tools:
formatted_tools.append({
"name": tool.name,
"description": tool.description,
"state": getattr(tool, "state", "unknown"),
"input_schema": tool.input_schema if hasattr(tool, "input_schema") else {},
"output_schema": tool.output_schema if hasattr(tool, "output_schema") else {}
})
print(f"π Found {len(formatted_tools)} tools in registry")
return formatted_tools
def deploy_tool(self, tool_name: str) -> Dict[str, Any]:
"""
Deploy and activate a specific tool from the registry.
Args:
tool_name: Name of the tool to deploy
Returns:
Dictionary with deployment status and URL (if successful)
"""
print(f"π ManagerAgent: Deploying tool '{tool_name}'")
# Check if tool exists in registry
if not self.registry.get_tool(tool_name):
error_msg = f"Tool '{tool_name}' not found in registry"
print(f"β {error_msg}")
return {"success": False, "error": error_msg}
# Attempt to deploy the tool
try:
url = self.registry.deploy_tool(tool_name)
if url:
print(f"β
Successfully deployed tool '{tool_name}' at {url}")
return {
"success": True,
"tool_name": tool_name,
"url": url,
"message": f"Tool '{tool_name}' successfully deployed"
}
else:
error_msg = f"Failed to deploy tool '{tool_name}'"
print(f"β {error_msg}")
return {"success": False, "error": error_msg}
except Exception as e:
error_msg = f"Error deploying tool '{tool_name}': {str(e)}"
print(f"π¨ {error_msg}")
return {"success": False, "error": error_msg}
def brainstorm_tools(self, user_task: str, available_tools: str = "") -> Dict[str, Any]:
"""
Use the Brainstormer to analyze if existing tools are sufficient or new tools are needed.
Args:
user_task: The user's request or task
available_tools: Optional comma-separated list of available tool names
Returns:
Dictionary with tool recommendations or specifications for new tools
"""
print(f"π§ ManagerAgent: Brainstorming tools for task: {user_task[:100]}{'...' if len(user_task) > 100 else ''}")
# If available_tools is not provided, get them from the registry
if not available_tools:
tools = self.get_available_tools()
available_tools = ", ".join([tool["name"] for tool in tools])
try:
# Call the brainstormer to analyze the task and available tools
result = self.brainstormer.generate_mcp_specs_to_fulfill_user_task(
task=user_task,
tools_list=available_tools
)
if isinstance(result, dict) and "error" in result:
print(f"β Brainstorming failed: {result['error']}")
return {
"success": False,
"error": result["error"],
"recommendations": "Unable to analyze tools for this task."
}
print(f"β
Brainstorming complete. Found {len(result)} tool recommendations.")
# Format the result for better consumption by the agent
return {
"success": True,
"recommendations": result,
"summary": f"Analysis complete. Found {len(result)} tool recommendations."
}
except Exception as e:
error_msg = f"Error during tool brainstorming: {str(e)}"
print(f"π¨ {error_msg}")
return {
"success": False,
"error": error_msg,
"recommendations": "Unable to analyze tools due to an error."
}
def use_registry_tool(self, tool_name: str, *args, **kwargs) -> Dict[str, Any]:
"""
Use a registered tool directly by invoking its endpoint.
This method utilizes the Registry's use_tool method to invoke a registered tool.
It handles tool deployment if needed and provides proper error handling and user feedback.
Args:
tool_name: Name of the tool to use
*args: Positional arguments to pass to the tool
**kwargs: Keyword arguments to pass to the tool
Returns:
The response from the tool as a Python object
"""
try:
# Send update to user
self.send_update(f"Using tool: {tool_name}")
# Check if tool exists in registry
if not self.registry.get_tool(tool_name):
error_msg = f"Tool '{tool_name}' not found in registry"
self.send_update(error_msg)
return {"error": error_msg, "success": False}
# Use the tool via Registry's use_tool method
self.send_update(f"Executing tool: {tool_name}")
result = self.registry.use_tool(tool_name, *args, **kwargs)
# Send success update
self.send_update(f"Tool '{tool_name}' executed successfully")
# Return result with success flag
if isinstance(result, dict):
result["success"] = True
return result
else:
return {"result": result, "success": True}
except ValueError as e:
# Handle expected errors (tool not found, deployment failed)
error_msg = str(e)
self.send_update(f"Error: {error_msg}")
return {"error": error_msg, "success": False}
except Exception as e:
# Handle unexpected errors
error_msg = f"Unexpected error using tool '{tool_name}': {str(e)}"
self.send_update(f"Error: {error_msg}")
return {"error": error_msg, "success": False}
|