|
|
import torch
|
|
|
from torch.utils.data import Dataset, DataLoader
|
|
|
|
|
|
import torch.nn.functional as F
|
|
|
from sklearn.preprocessing import MinMaxScaler, StandardScaler
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
class TimeDataset(Dataset):
|
|
|
def __init__(self, raw_data, edge_index, mode='train', config = None):
|
|
|
self.raw_data = raw_data
|
|
|
|
|
|
self.config = config
|
|
|
self.edge_index = edge_index
|
|
|
self.mode = mode
|
|
|
|
|
|
x_data = raw_data[:-1]
|
|
|
labels = raw_data[-1]
|
|
|
|
|
|
|
|
|
data = x_data
|
|
|
|
|
|
|
|
|
data = torch.tensor(data).double()
|
|
|
labels = torch.tensor(labels).double()
|
|
|
|
|
|
self.x, self.y, self.labels = self.process(data, labels)
|
|
|
|
|
|
def __len__(self):
|
|
|
return len(self.x)
|
|
|
|
|
|
|
|
|
def process(self, data, labels):
|
|
|
x_arr, y_arr = [], []
|
|
|
labels_arr = []
|
|
|
|
|
|
slide_win, slide_stride = [self.config[k] for k
|
|
|
in ['slide_win', 'slide_stride']
|
|
|
]
|
|
|
is_train = self.mode == 'train'
|
|
|
|
|
|
node_num, total_time_len = data.shape
|
|
|
|
|
|
rang = range(slide_win, total_time_len, slide_stride) if is_train else range(slide_win, total_time_len)
|
|
|
|
|
|
for i in rang:
|
|
|
|
|
|
ft = data[:, i-slide_win:i]
|
|
|
tar = data[:, i]
|
|
|
|
|
|
x_arr.append(ft)
|
|
|
y_arr.append(tar)
|
|
|
|
|
|
labels_arr.append(labels[i])
|
|
|
|
|
|
|
|
|
x = torch.stack(x_arr).contiguous()
|
|
|
y = torch.stack(y_arr).contiguous()
|
|
|
|
|
|
labels = torch.Tensor(labels_arr).contiguous()
|
|
|
|
|
|
return x, y, labels
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
|
|
feature = self.x[idx].double()
|
|
|
y = self.y[idx].double()
|
|
|
|
|
|
edge_index = self.edge_index.long()
|
|
|
|
|
|
label = self.labels[idx].double()
|
|
|
|
|
|
return feature, y, label, edge_index
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|