File size: 6,137 Bytes
b265364 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import numpy as np
import torch
import matplotlib.pyplot as plt
import torch.nn as nn
import time
from util.time import *
from util.env import *
from torch_geometric.nn import GCNConv, GATConv, EdgeConv
import math
import torch.nn.functional as F
from .graph_layer import GraphLayer
def get_batch_edge_index(org_edge_index, batch_num, node_num):
# org_edge_index:(2, edge_num)
edge_index = org_edge_index.clone().detach()
edge_num = org_edge_index.shape[1]
batch_edge_index = edge_index.repeat(1,batch_num).contiguous()
for i in range(batch_num):
batch_edge_index[:, i*edge_num:(i+1)*edge_num] += i*node_num
return batch_edge_index.long()
class OutLayer(nn.Module):
def __init__(self, in_num, node_num, layer_num, inter_num = 512):
super(OutLayer, self).__init__()
modules = []
for i in range(layer_num):
# last layer, output shape:1
if i == layer_num-1:
modules.append(nn.Linear( in_num if layer_num == 1 else inter_num, 1))
else:
layer_in_num = in_num if i == 0 else inter_num
modules.append(nn.Linear( layer_in_num, inter_num ))
modules.append(nn.BatchNorm1d(inter_num))
modules.append(nn.ReLU())
self.mlp = nn.ModuleList(modules)
def forward(self, x):
out = x
for mod in self.mlp:
if isinstance(mod, nn.BatchNorm1d):
out = out.permute(0,2,1)
out = mod(out)
out = out.permute(0,2,1)
else:
out = mod(out)
return out
class GNNLayer(nn.Module):
def __init__(self, in_channel, out_channel, inter_dim=0, heads=1, node_num=100):
super(GNNLayer, self).__init__()
self.gnn = GraphLayer(in_channel, out_channel, inter_dim=inter_dim, heads=heads, concat=False)
self.bn = nn.BatchNorm1d(out_channel)
self.relu = nn.ReLU()
self.leaky_relu = nn.LeakyReLU()
def forward(self, x, edge_index, embedding=None, node_num=0):
out, (new_edge_index, att_weight) = self.gnn(x, edge_index, embedding, return_attention_weights=True)
self.att_weight_1 = att_weight
self.edge_index_1 = new_edge_index
out = self.bn(out)
return self.relu(out)
class GDN(nn.Module):
def __init__(self, edge_index_sets, node_num, dim=64, out_layer_inter_dim=256, input_dim=10, out_layer_num=1, topk=20):
super(GDN, self).__init__()
self.edge_index_sets = edge_index_sets
device = get_device()
edge_index = edge_index_sets[0]
embed_dim = dim
self.embedding = nn.Embedding(node_num, embed_dim)
self.bn_outlayer_in = nn.BatchNorm1d(embed_dim)
edge_set_num = len(edge_index_sets)
self.gnn_layers = nn.ModuleList([
GNNLayer(input_dim, dim, inter_dim=dim+embed_dim, heads=1) for i in range(edge_set_num)
])
self.node_embedding = None
self.topk = topk
self.learned_graph = None
self.out_layer = OutLayer(dim*edge_set_num, node_num, out_layer_num, inter_num = out_layer_inter_dim)
self.cache_edge_index_sets = [None] * edge_set_num
self.cache_embed_index = None
self.dp = nn.Dropout(0.2)
self.init_params()
def init_params(self):
nn.init.kaiming_uniform_(self.embedding.weight, a=math.sqrt(5))
def forward(self, data, org_edge_index):
x = data.clone().detach()
edge_index_sets = self.edge_index_sets
device = data.device
batch_num, node_num, all_feature = x.shape
x = x.view(-1, all_feature).contiguous()
gcn_outs = []
for i, edge_index in enumerate(edge_index_sets):
edge_num = edge_index.shape[1]
cache_edge_index = self.cache_edge_index_sets[i]
if cache_edge_index is None or cache_edge_index.shape[1] != edge_num*batch_num:
self.cache_edge_index_sets[i] = get_batch_edge_index(edge_index, batch_num, node_num).to(device)
batch_edge_index = self.cache_edge_index_sets[i]
all_embeddings = self.embedding(torch.arange(node_num).to(device))
weights_arr = all_embeddings.detach().clone()
all_embeddings = all_embeddings.repeat(batch_num, 1)
weights = weights_arr.view(node_num, -1)
cos_ji_mat = torch.matmul(weights, weights.T)
normed_mat = torch.matmul(weights.norm(dim=-1).view(-1,1), weights.norm(dim=-1).view(1,-1))
cos_ji_mat = cos_ji_mat / normed_mat
dim = weights.shape[-1]
topk_num = self.topk
topk_indices_ji = torch.topk(cos_ji_mat, topk_num, dim=-1)[1]
self.learned_graph = topk_indices_ji
#gated_i = torch.arange(0, node_num).T.unsqueeze(1).repeat(1, topk_num).flatten().to(device).unsqueeze(0)
gated_i = torch.arange(0, node_num).unsqueeze(1).repeat(1, topk_num).flatten().to(device).unsqueeze(0)
gated_j = topk_indices_ji.flatten().unsqueeze(0)
gated_edge_index = torch.cat((gated_j, gated_i), dim=0)
batch_gated_edge_index = get_batch_edge_index(gated_edge_index, batch_num, node_num).to(device)
gcn_out = self.gnn_layers[i](x, batch_gated_edge_index, node_num=node_num*batch_num, embedding=all_embeddings)
gcn_outs.append(gcn_out)
x = torch.cat(gcn_outs, dim=1)
x = x.view(batch_num, node_num, -1)
indexes = torch.arange(0,node_num).to(device)
out = torch.mul(x, self.embedding(indexes))
out = out.permute(0,2,1)
out = F.relu(self.bn_outlayer_in(out))
out = out.permute(0,2,1)
out = self.dp(out)
out = self.out_layer(out)
out = out.view(-1, node_num)
return out
|