Spaces:
Build error
Build error
Added Gradio app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
English Accent Detector - Analyzes speaker's accent from video URLs
|
| 4 |
+
"""
|
| 5 |
+
from __future__ import annotations
|
| 6 |
+
import argparse
|
| 7 |
+
import random
|
| 8 |
+
import tempfile
|
| 9 |
+
from collections import Counter
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
import time
|
| 12 |
+
|
| 13 |
+
import torch
|
| 14 |
+
import torchaudio
|
| 15 |
+
import gradio as gr
|
| 16 |
+
from speechbrain.inference.classifiers import EncoderClassifier
|
| 17 |
+
from yt_dlp import YoutubeDL
|
| 18 |
+
from huggingface_hub.utils import LocalEntryNotFoundError
|
| 19 |
+
|
| 20 |
+
# βββββββββββββββ Model setup (with retry) βββββββββββββββ
|
| 21 |
+
ACCENT_MODEL_ID = "Jzuluaga/accent-id-commonaccent_ecapa"
|
| 22 |
+
LANG_MODEL_ID = "speechbrain/lang-id-voxlingua107-ecapa"
|
| 23 |
+
DEVICE = "cpu" # force CPU; Spaces' free tier has no GPU
|
| 24 |
+
|
| 25 |
+
def load_with_retry(model_id: str, tries: int = 5, backoff: int = 5):
|
| 26 |
+
"""Download model weights with exponential-backoff retry."""
|
| 27 |
+
for attempt in range(1, tries + 1):
|
| 28 |
+
try:
|
| 29 |
+
return EncoderClassifier.from_hparams(
|
| 30 |
+
source=model_id,
|
| 31 |
+
run_opts={"device": DEVICE},
|
| 32 |
+
)
|
| 33 |
+
except LocalEntryNotFoundError:
|
| 34 |
+
if attempt == tries:
|
| 35 |
+
raise
|
| 36 |
+
wait = backoff * attempt
|
| 37 |
+
print(f"[{model_id}] download failed (try {attempt}/{tries}), retrying in {wait}s")
|
| 38 |
+
time.sleep(wait)
|
| 39 |
+
|
| 40 |
+
accent_clf = load_with_retry(ACCENT_MODEL_ID)
|
| 41 |
+
lang_clf = load_with_retry(LANG_MODEL_ID)
|
| 42 |
+
|
| 43 |
+
# βββββββββββββββ Helpers βββββββββββββββ
|
| 44 |
+
def sec_to_hms(sec: int) -> str:
|
| 45 |
+
h = sec // 3600
|
| 46 |
+
m = (sec % 3600) // 60
|
| 47 |
+
s = sec % 60
|
| 48 |
+
return f"{h:02d}:{m:02d}:{s:02d}"
|
| 49 |
+
|
| 50 |
+
def download_audio(url: str, out_path: Path) -> Path:
|
| 51 |
+
opts = {
|
| 52 |
+
"format": "bestaudio/best",
|
| 53 |
+
"outtmpl": str(out_path.with_suffix(".%(ext)s")),
|
| 54 |
+
"postprocessors": [],
|
| 55 |
+
"quiet": True,
|
| 56 |
+
}
|
| 57 |
+
with YoutubeDL(opts) as ydl:
|
| 58 |
+
info = ydl.extract_info(url, download=True)
|
| 59 |
+
filename = ydl.prepare_filename(info)
|
| 60 |
+
return Path(filename)
|
| 61 |
+
|
| 62 |
+
def extract_wav(src: Path, dst: Path, start: int, dur: int = 8) -> None:
|
| 63 |
+
target_sr = 16000
|
| 64 |
+
offset = start * target_sr
|
| 65 |
+
frames = dur * target_sr
|
| 66 |
+
wav, orig_sr = torchaudio.load(str(src), frame_offset=offset, num_frames=frames)
|
| 67 |
+
if orig_sr != target_sr:
|
| 68 |
+
wav = torchaudio.transforms.Resample(orig_sr, target_sr)(wav)
|
| 69 |
+
torchaudio.save(str(dst), wav, target_sr, encoding="PCM_S", bits_per_sample=16)
|
| 70 |
+
|
| 71 |
+
def pick_random_offsets(total_s: int, n: int) -> list[int]:
|
| 72 |
+
max_start = total_s - 8
|
| 73 |
+
pool = list(range(max_start + 1))
|
| 74 |
+
if n > len(pool):
|
| 75 |
+
n = len(pool)
|
| 76 |
+
return random.sample(pool, n)
|
| 77 |
+
|
| 78 |
+
# βββββββββββββββ Classification βββββββββββββββ
|
| 79 |
+
def classify_language(wav: Path) -> tuple[str, float]:
|
| 80 |
+
sig = lang_clf.load_audio(str(wav))
|
| 81 |
+
_, log_p, _, label = lang_clf.classify_batch(sig)
|
| 82 |
+
return label[0], float(log_p.exp().item()) * 100
|
| 83 |
+
|
| 84 |
+
def classify_accent(wav: Path) -> tuple[str, float]:
|
| 85 |
+
sig = accent_clf.load_audio(str(wav))
|
| 86 |
+
_, log_p, _, label = accent_clf.classify_batch(sig)
|
| 87 |
+
return label[0], float(log_p.item()) * 100
|
| 88 |
+
|
| 89 |
+
def calculate_english_confidence(lang: str, lang_conf: float, accent_conf: float) -> float:
|
| 90 |
+
if not lang.lower().startswith("en"):
|
| 91 |
+
return 0.0
|
| 92 |
+
english_score = (lang_conf * 0.7) + (accent_conf * 0.3)
|
| 93 |
+
return min(100.0, max(0.0, english_score))
|
| 94 |
+
|
| 95 |
+
# βββββββββββββββ Core pipeline βββββββββββββββ
|
| 96 |
+
def analyse_accent(url: str, n_samples: int = 4) -> dict:
|
| 97 |
+
if not url:
|
| 98 |
+
return {"error": "Please provide a video URL."}
|
| 99 |
+
if n_samples < 1:
|
| 100 |
+
return {"error": "Number of samples must be at least 1."}
|
| 101 |
+
|
| 102 |
+
with tempfile.TemporaryDirectory() as td:
|
| 103 |
+
td = Path(td)
|
| 104 |
+
try:
|
| 105 |
+
# 1) Download audio
|
| 106 |
+
audio_file = download_audio(url, td / "audio")
|
| 107 |
+
info = torchaudio.info(str(audio_file))
|
| 108 |
+
total_s = int(info.num_frames / info.sample_rate)
|
| 109 |
+
if total_s < 8:
|
| 110 |
+
return {"error": "Audio shorter than 8 seconds."}
|
| 111 |
+
|
| 112 |
+
# 2) Language detection
|
| 113 |
+
mid_start = max(0, total_s // 2 - 4)
|
| 114 |
+
lang_wav = td / "lang_check.wav"
|
| 115 |
+
extract_wav(audio_file, lang_wav, start=mid_start)
|
| 116 |
+
lang, lang_conf = classify_language(lang_wav)
|
| 117 |
+
is_english = lang.lower().startswith("en")
|
| 118 |
+
|
| 119 |
+
if not is_english:
|
| 120 |
+
return {
|
| 121 |
+
"is_english_speaker": False,
|
| 122 |
+
"detected_language": lang,
|
| 123 |
+
"language_confidence": round(lang_conf, 1),
|
| 124 |
+
"accent_classification": "N/A",
|
| 125 |
+
"english_confidence_score": 0.0,
|
| 126 |
+
"summary": f"Non-English language detected: {lang} ({lang_conf:.1f}%)"
|
| 127 |
+
}
|
| 128 |
+
|
| 129 |
+
# 3) Accent analysis
|
| 130 |
+
offsets = pick_random_offsets(total_s, n_samples)
|
| 131 |
+
accent_results = []
|
| 132 |
+
for i, start in enumerate(sorted(offsets)):
|
| 133 |
+
clip_wav = td / f"clip_{i}.wav"
|
| 134 |
+
extract_wav(audio_file, clip_wav, start=start)
|
| 135 |
+
acc, conf = classify_accent(clip_wav)
|
| 136 |
+
accent_results.append({
|
| 137 |
+
"clip": i + 1,
|
| 138 |
+
"time_range": f"{sec_to_hms(start)} - {sec_to_hms(start + 8)}",
|
| 139 |
+
"accent": acc,
|
| 140 |
+
"confidence": round(conf, 1),
|
| 141 |
+
})
|
| 142 |
+
|
| 143 |
+
# 4) Aggregate results
|
| 144 |
+
labels = [r["accent"] for r in accent_results]
|
| 145 |
+
most_common_accent, count = Counter(labels).most_common(1)[0]
|
| 146 |
+
confs = [r["confidence"] for r in accent_results if r["accent"] == most_common_accent]
|
| 147 |
+
avg_conf = sum(confs) / len(confs)
|
| 148 |
+
eng_conf = calculate_english_confidence(lang, lang_conf, avg_conf)
|
| 149 |
+
|
| 150 |
+
return {
|
| 151 |
+
"is_english_speaker": True,
|
| 152 |
+
"detected_language": "English",
|
| 153 |
+
"language_confidence": round(lang_conf, 1),
|
| 154 |
+
"accent_classification": most_common_accent,
|
| 155 |
+
"accent_confidence": round(avg_conf, 1),
|
| 156 |
+
"english_confidence_score": round(eng_conf, 1),
|
| 157 |
+
"samples_analyzed": len(accent_results),
|
| 158 |
+
"consensus": f"{count}/{n_samples} samples",
|
| 159 |
+
"detailed_results": accent_results,
|
| 160 |
+
"summary": (
|
| 161 |
+
f"English speaker detected with {most_common_accent} accent "
|
| 162 |
+
f"(confidence: {eng_conf:.1f}%)"
|
| 163 |
+
)
|
| 164 |
+
}
|
| 165 |
+
|
| 166 |
+
except Exception as e:
|
| 167 |
+
return {"error": f"Processing failed: {e}"}
|
| 168 |
+
|
| 169 |
+
# βββββββββββββββ Gradio UI βββββββββββββββ
|
| 170 |
+
def app():
|
| 171 |
+
with gr.Blocks(title="English Accent Detector") as demo:
|
| 172 |
+
gr.Markdown(
|
| 173 |
+
"# ποΈ English Accent Detector\n"
|
| 174 |
+
"**Analyze speaker's accent from video URLs**\n\n"
|
| 175 |
+
"This tool:\n"
|
| 176 |
+
"1. Accepts public video URLs (YouTube, Loom, direct MP4 links)\n"
|
| 177 |
+
"2. Extracts audio from the video\n"
|
| 178 |
+
"3. Analyzes if the speaker is an English language candidate\n"
|
| 179 |
+
"4. Classifies the accent type and provides confidence scores\n"
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
with gr.Row():
|
| 183 |
+
with gr.Column():
|
| 184 |
+
url_input = gr.Text(
|
| 185 |
+
label="Video URL",
|
| 186 |
+
placeholder="Enter public video URL (YouTube, Loom, etc.)",
|
| 187 |
+
lines=1
|
| 188 |
+
)
|
| 189 |
+
samples_input = gr.Slider(
|
| 190 |
+
minimum=1,
|
| 191 |
+
maximum=10,
|
| 192 |
+
value=4,
|
| 193 |
+
step=1,
|
| 194 |
+
label="Number of audio samples to analyze",
|
| 195 |
+
info="More samples = more accurate but slower"
|
| 196 |
+
)
|
| 197 |
+
analyze_btn = gr.Button("π Analyze Accent", variant="primary")
|
| 198 |
+
|
| 199 |
+
with gr.Column():
|
| 200 |
+
result_output = gr.JSON(label="Analysis Results")
|
| 201 |
+
|
| 202 |
+
gr.Markdown("### Example URLs to try:")
|
| 203 |
+
gr.Examples(
|
| 204 |
+
examples=[
|
| 205 |
+
["https://www.youtube.com/watch?v=dQw4w9WgXcQ", 4],
|
| 206 |
+
["https://www.youtube.com/shorts/VO6n9GTzSqU", 4],
|
| 207 |
+
],
|
| 208 |
+
inputs=[url_input, samples_input],
|
| 209 |
+
label="Click to load example"
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
analyze_btn.click(
|
| 213 |
+
fn=analyse_accent,
|
| 214 |
+
inputs=[url_input, samples_input],
|
| 215 |
+
outputs=result_output
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
return demo
|
| 219 |
+
|
| 220 |
+
if __name__ == "__main__":
|
| 221 |
+
parser = argparse.ArgumentParser(description="English Accent Detector")
|
| 222 |
+
parser.add_argument(
|
| 223 |
+
"--port", type=int, default=7860,
|
| 224 |
+
help="Port to run the server on"
|
| 225 |
+
)
|
| 226 |
+
args = parser.parse_args()
|
| 227 |
+
|
| 228 |
+
demo = app()
|
| 229 |
+
# On Hugging Face Spaces, a public URL is provided automatically
|
| 230 |
+
demo.launch(server_port=args.port)
|