File size: 26,185 Bytes
abfc6f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab70593
abfc6f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab70593
abfc6f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e1d05d
abfc6f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab70593
2a38c5a
 
 
 
 
 
 
 
 
 
abfc6f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
import os
import json
import tempfile
import logging
from typing import Dict, List, Any, Optional, Tuple
from datetime import datetime
import asyncio

import gradio as gr
import pandas as pd
from agent import GeminiGAIAAgent, GAIAQuestion

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class GeminiGAIAApp:
    """
    Gradio application for Gemini-powered GAIA Benchmark Agent
    Hugging Face Agents Course - Unit 4 Final Assignment
    """
    
    def __init__(self):
        self.agent = None
        self.conversation_history = []
        self.current_question_id = 0
        
        # Agent metadata
        self.agent_info = {
            "name": "Gemini GAIA Benchmark Agent",
            "author": "AdilzhanB",
            "course": "Hugging Face Agents Course - Unit 4",
            "model": "Google Gemini 2.0-flash-001",
            "version": "1.0",
            "created": "2025-06-17 15:32:22",
            "capabilities": [
                "Complex multi-step reasoning",
                "Advanced mathematical calculations", 
                "Real-time web search",
                "Multimodal file analysis",
                "Natural language understanding"
            ]
        }
        
        # Huggingface repository link
        self.agent_code_link = "https://huggingface.co/spaces/AdilzhanB/Gemini-GAIA-Agent"
        
    def _initialize_agent(self, api_key: Optional[str] = None):
        """Initialize the Gemini GAIA agent"""
        try:
            self.agent = GeminiGAIAAgent(
                model_name="gemini-2.0-flash-001",
                api_key=api_key,
                temperature=0.1,
                verbose=False
            )
            logger.info("Gemini agent initialized successfully")
            return "โœ… Agent initialized successfully!"
        except Exception as e:
            error_msg = f"Failed to initialize agent: {str(e)}"
            logger.error(error_msg)
            self.agent = None
            return f"โŒ {error_msg}"
    
    def solve_question(self, 
                      question_text: str, 
                      difficulty_level: int, 
                      uploaded_file, 
                      api_key: Optional[str] = None) -> Tuple[str, str, str, str, str, str]:
        """
        Main function to solve GAIA questions
        
        Returns: (reasoning, tools_used, confidence, processing_time, final_answer, status)
        """
        try:
            # Initialize agent if needed or API key changed
            if not self.agent or (api_key and api_key.strip()):
                init_status = self._initialize_agent(api_key.strip() if api_key else None)
                if "โŒ" in init_status:
                    return "", "", "", "", "", init_status
            
            if not self.agent:
                return "", "", "", "", "", "โŒ Agent not initialized. Please provide a valid Google API key."
            
            if not question_text.strip():
                return "", "", "", "", "", "โŒ Please enter a question."
            
            # Handle file upload
            file_path = None
            file_name = None
            if uploaded_file is not None:
                file_path = uploaded_file.name
                file_name = os.path.basename(file_path)
            
            # Create GAIA question
            self.current_question_id += 1
            gaia_question = GAIAQuestion(
                question_id=f"user_question_{self.current_question_id}",
                question=question_text,
                level=difficulty_level,
                file_path=file_path,
                file_name=file_name
            )
            
            # Solve the question
            logger.info(f"Solving question: {question_text[:50]}...")
            result = self.agent.solve_gaia_question(gaia_question)
            
            # Store in conversation history
            self.conversation_history.append({
                "timestamp": datetime.now().isoformat(),
                "question": question_text,
                "result": result
            })
            
            # Extract results
            if result.get("error"):
                return "", "", "", "", "", f"โŒ Error: {result.get('agent_response', 'Unknown error')}"
            
            # Format reasoning steps
            reasoning_steps = "\n".join([
                f"{i+1}. {step}" for i, step in enumerate(result.get("reasoning_steps", []))
            ])
            if not reasoning_steps:
                reasoning_steps = "Gemini processed the question using its internal reasoning."
            
            # Format tools used
            tools_used = ", ".join(result.get("tools_used", ["None"]))
            if not tools_used or tools_used == "None":
                tools_used = "Gemini's built-in capabilities"
            
            # Get other metrics
            confidence = f"{result.get('confidence_score', 0.0):.2f}"
            processing_time = f"{result.get('processing_time_seconds', 0):.2f}s"
            final_answer = result.get("agent_response", "No answer generated")
            
            # Success status
            status = f"โœ… Question solved successfully! (Model: {result.get('model_used', 'Gemini')})"
            
            logger.info(f"Question solved successfully. Tools: {tools_used}, Confidence: {confidence}")
            
            return (
                reasoning_steps,
                tools_used,
                confidence,
                processing_time,
                final_answer,
                status
            )
            
        except Exception as e:
            error_msg = f"โŒ Error solving question: {str(e)}"
            logger.error(error_msg)
            return "", "", "", "", "", error_msg
    
    def get_conversation_history(self) -> str:
        """Get formatted conversation history"""
        if not self.conversation_history:
            return "No questions solved yet. Try asking a GAIA-style question!"
        
        history_text = "## ๐Ÿ“š Recent Conversation History\n\n"
        
        for i, entry in enumerate(self.conversation_history[-5:], 1):  # Show last 5
            result = entry['result']
            
            history_text += f"### Question {i}\n"
            history_text += f"**Asked:** {entry['question'][:150]}...\n"
            history_text += f"**Level:** {result.get('level', 'N/A')}\n"
            history_text += f"**Tools Used:** {', '.join(result.get('tools_used', ['None']))}\n"
            history_text += f"**Confidence:** {result.get('confidence_score', 0):.2f}\n"
            history_text += f"**Answer Preview:** {result.get('agent_response', 'No answer')[:200]}...\n"
            history_text += f"**Time:** {entry['timestamp'][:19]}\n\n"
            history_text += "---\n\n"
        
        return history_text
    
    def clear_history(self) -> str:
        """Clear conversation history"""
        self.conversation_history = []
        self.current_question_id = 0
        return "๐Ÿ—‘๏ธ History cleared successfully!"
    
    def test_agent_capabilities(self, api_key: Optional[str] = None) -> str:
        """Test agent and tool capabilities"""
        try:
            # Initialize agent if needed
            if not self.agent or (api_key and api_key.strip()):
                init_status = self._initialize_agent(api_key.strip() if api_key else None)
                if "โŒ" in init_status:
                    return init_status
            
            if not self.agent:
                return "โŒ Agent not initialized. Please provide a valid Google API key."
            
            # Test tools
            tool_results = self.agent.test_tools()
            
            result_text = "## ๐Ÿ”ง Agent Capability Test Results\n\n"
            result_text += f"**Model:** {self.agent.model_name}\n"
            result_text += f"**Status:** {'โœ… Initialized' if self.agent.model else 'โŒ Not initialized'}\n\n"
            
            result_text += "### Tool Test Results\n"
            
            for tool_name, result in tool_results.items():
                status_icon = "โœ…" if "โœ…" in result else "โŒ"
                result_text += f"{status_icon} **{tool_name.title()}**: {result}\n"
            
            result_text += "\n### Available Capabilities\n"
            for capability in self.agent_info["capabilities"]:
                result_text += f"- โœ… {capability}\n"
            
            return result_text
            
        except Exception as e:
            return f"โŒ Error testing agent: {str(e)}"
    
    def get_example_question(self, level: int, example_type: str) -> Tuple[str, int]:
        """Get example questions based on level and type"""
        examples = {
            1: {
                "math": "What is the square root of 144?",
                "factual": "What is the capital of Japan?",
                "conversion": "Convert 100 degrees Fahrenheit to Celsius"
            },
            2: {
                "financial": "If I invest $1000 at 5% annual compound interest, how much will I have after 3 years?",
                "current": "What is the current population of Tokyo according to the latest data?",
                "analysis": "Calculate the average temperature if the daily temperatures were 72ยฐF, 75ยฐF, 68ยฐF, and 71ยฐF"
            },
            3: {
                "complex": "Based on current economic indicators, what are the main recession risks for 2024?",
                "research": "Compare the GDP growth rates of the top 5 economies in 2023 and identify key trends",
                "multimodal": "Analyze any uploaded data file and provide insights about patterns and trends"
            }
        }
        
        question = examples.get(level, {}).get(example_type, "What is 2 + 2?")
        return question, level
    
    def create_interface(self):
        """Create the comprehensive Gradio interface"""
        
        # Custom CSS for professional styling
        custom_css = """
        .gradio-container {
            max-width: 1400px !important;
            margin: 0 auto;
        }
        .main-header {
            text-align: center;
            background: linear-gradient(90deg, #4285f4, #34a853, #fbbc05, #ea4335);
            -webkit-background-clip: text;
            -webkit-text-fill-color: transparent;
            background-clip: text;
            margin-bottom: 20px;
        }
        .info-box {
            background-color: #c0c7cf;
            border-left: 4px solid #4285f4;
            padding: 15px;
            margin: 10px 0;
            border-radius: 5px;
        }
        """
        
        with gr.Blocks(css=custom_css, title="Gemini GAIA Agent", theme=gr.themes.Soft()) as interface:
            
            # Main Header
            gr.HTML("""
                <div class="main-header">
                    <h1>๐Ÿš€ Gemini GAIA Benchmark Agent</h1>
                </div>
            """)
            
            # Agent Information
            with gr.Row():
                gr.Markdown(f"""
                <div class="info-box">
                    <h3>๐Ÿค– Agent Information</h3>
                    <ul>
                        <li><strong>Created by:</strong> {self.agent_info['author']}</li>
                        <li><strong>Course:</strong> {self.agent_info['course']}</li>
                        <li><strong>Model:</strong> {self.agent_info['model']}</li>
                        <li><strong>Version:</strong> {self.agent_info['version']}</li>
                        <li><strong>Date:</strong> {self.agent_info['created']}</li>
                    </ul>
                </div>
                """)
        
            # API Key Configuration
            with gr.Row():
                with gr.Column():
                    api_key_input = gr.Textbox(
                        label="๐Ÿ”‘ Google API Key (Required)",
                        placeholder="Enter your Google AI API key here...",
                        type="password",
                        info="Get your free API key from: https://makersuite.google.com/app/apikey"
                    )
                    test_agent_btn = gr.Button("๐Ÿงช Test Agent & Tools", variant="secondary")
            
            # Main Question Interface
            gr.Markdown("## ๐Ÿ’ญ Ask Your GAIA Question")
            
            with gr.Row():
                # Left Panel - Input
                with gr.Column(scale=2):
                    question_input = gr.Textbox(
                        label="๐Ÿ“ Your Question",
                        placeholder="Enter your GAIA-style question here...\n\nExamples:\n- What is the compound interest on $1000 at 5% for 3 years?\n- What is the current population of Tokyo?\n- Analyze the uploaded CSV data and find patterns",
                        lines=4,
                        max_lines=8
                    )
                    
                    with gr.Row():
                        difficulty_slider = gr.Slider(
                            label="๐ŸŽฏ Difficulty Level",
                            minimum=1,
                            maximum=3,
                            value=2,
                            step=1,
                            info="1=Basic | 2=Intermediate | 3=Advanced"
                        )
                        
                        file_upload = gr.File(
                            label="๐Ÿ“Ž Upload File (Optional)",
                            file_types=[".txt", ".csv", ".json", ".xlsx", ".png", ".jpg", ".jpeg", ".gif", ".pdf"],
                        )
                    
                    solve_button = gr.Button(
                        "๐Ÿš€ Solve with Gemini",
                        variant="primary",
                        size="lg",
                        scale=2
                    )
                
                # Right Panel - Quick Examples
                with gr.Column(scale=1):
                    gr.Markdown("### ๐Ÿ“š Quick Examples")
                    
                    # Level 1 Examples
                    gr.Markdown("**Level 1 (Basic)**")
                    with gr.Row():
                        math_btn = gr.Button("๐Ÿงฎ Math", size="sm")
                        factual_btn = gr.Button("๐ŸŒ Factual", size="sm")
                        convert_btn = gr.Button("๐Ÿ”„ Convert", size="sm")
                    
                    # Level 2 Examples  
                    gr.Markdown("**Level 2 (Intermediate)**")
                    with gr.Row():
                        finance_btn = gr.Button("๐Ÿ’ฐ Finance", size="sm")
                        current_btn = gr.Button("๐Ÿ“Š Current", size="sm")
                        analysis_btn = gr.Button("๐Ÿ“ˆ Analysis", size="sm")
                    
                    # Level 3 Examples
                    gr.Markdown("**Level 3 (Advanced)**")
                    with gr.Row():
                        complex_btn = gr.Button("๐Ÿง  Complex", size="sm")
                        research_btn = gr.Button("๐Ÿ”ฌ Research", size="sm")
                        multimodal_btn = gr.Button("๐Ÿ–ผ๏ธ Multimodal", size="sm")
            
            # Output Section
            gr.Markdown("## ๐ŸŽฏ Agent Response")
            
            with gr.Row():
                # Main Answer
                with gr.Column(scale=2):
                    final_answer_output = gr.Textbox(
                        label="๐Ÿค– Gemini's Answer",
                        lines=8,
                        max_lines=15,
                        show_copy_button=True,
                        info="Complete response with reasoning and solution"
                    )
                
                # Metrics
                with gr.Column(scale=1):
                    confidence_output = gr.Textbox(
                        label="๐Ÿ“Š Confidence Score",
                        max_lines=1,
                        info="Agent's confidence in the answer"
                    )
                    
                    processing_time_output = gr.Textbox(
                        label="โฑ๏ธ Processing Time",
                        max_lines=1,
                        info="Time taken to solve"
                    )
                    
                    tools_used_output = gr.Textbox(
                        label="๐Ÿ”ง Tools Used",
                        max_lines=3,
                        info="Which capabilities were utilized"
                    )
                    
                    status_output = gr.Textbox(
                        label="โœ… Status",
                        max_lines=2,
                        info="Execution status and model info"
                    )
            
            # Detailed Reasoning (Expandable)
            with gr.Accordion("๐Ÿ” Detailed Reasoning Steps", open=False):
                reasoning_output = gr.Textbox(
                    label="Step-by-Step Reasoning",
                    lines=10,
                    show_copy_button=True,
                    info="Detailed breakdown of the solution process"
                )
            
            # Additional Features Tabs
            with gr.Tabs():
                # Tool Testing Tab
                with gr.TabItem("๐Ÿ› ๏ธ Agent Capabilities"):
                    tool_test_output = gr.Markdown(
                        "Click 'Test Agent & Tools' above to check all capabilities.",
                        elem_classes=["info-box"]
                    )
                    
                    gr.Markdown("""
                    ### ๐ŸŽฏ GAIA Benchmark Capabilities
                    
                    This agent is designed to excel at:
                    
                    - **๐Ÿง  Complex Reasoning**: Multi-step logical problem solving
                    - **๐Ÿงฎ Mathematical Operations**: Advanced calculations and financial modeling  
                    - **๐Ÿ” Web Search**: Real-time information retrieval using DuckDuckGo
                    - **๐Ÿ“„ File Analysis**: Processing text, CSV, JSON, and image files
                    - **๐Ÿ–ผ๏ธ Multimodal Understanding**: Analyzing images with Gemini's vision capabilities
                    - **๐Ÿ“Š Data Processing**: Statistical analysis and pattern recognition
                    """)
                
                # History Tab
                with gr.TabItem("๐Ÿ“š Conversation History"):
                    with gr.Row():
                        refresh_history_btn = gr.Button("๐Ÿ”„ Refresh History", variant="secondary")
                        clear_history_btn = gr.Button("๐Ÿ—‘๏ธ Clear History", variant="stop")
                    
                    history_output = gr.Markdown(
                        "No questions solved yet. Start by asking a GAIA question!",
                        elem_classes=["info-box"]
                    )
                
                # Documentation Tab
                with gr.TabItem("๐Ÿ“– About GAIA"):
                    gr.Markdown(f"""
                    ### ๐ŸŽฏ What is GAIA?
                    
                    **GAIA (General AI Assistants)** is a comprehensive benchmark designed to evaluate AI assistants on real-world tasks that require:
                    
                    #### ๐Ÿง  Core Capabilities Tested
                    - **Reasoning**: Complex multi-step problem solving and logical inference
                    - **Multimodal Understanding**: Processing text, images, documents, and data files
                    - **Web Browsing**: Searching for and utilizing current information
                    - **Tool Use**: Effective integration and use of various computational tools
                    
                    #### ๐Ÿ“Š Difficulty Levels
                    - **Level 1**: Basic factual questions and simple reasoning tasks
                    - **Level 2**: Multi-step problems requiring tool integration
                    - **Level 3**: Complex tasks requiring advanced reasoning and multiple tools
                    
                    #### ๐Ÿš€ This Agent's Approach
                    This implementation uses **Google Gemini 1.5 Pro** for its:
                    - Superior multimodal capabilities (text + images)
                    - Advanced reasoning and problem-solving
                    - Large context window for complex tasks
                    - Built-in safety and reliability features
                    
                    #### ๐Ÿ”— Technical Details
                    - **Model**: Google Gemini 1.5 Pro
                    - **Framework**: Custom Python implementation
                    - **Tools**: Calculator, Web Search, File Analyzer
                    - **Interface**: Gradio 4.0+
                    - **Author**: {self.agent_info['author']}
                    
                    #### ๐Ÿ“š Resources
                    - [GAIA Benchmark Paper](https://arxiv.org/abs/2311.12983)
                    - [GAIA Dataset](https://huggingface.co/datasets/gaia-benchmark/GAIA)
                    - [Google AI Studio](https://makersuite.google.com/)
                    - [Course Repository]({self.agent_code_link})
                    """)
            
            # Wire up all the interactions
            
            # Main solve function
            solve_button.click(
                self.solve_question,
                inputs=[question_input, difficulty_slider, file_upload, api_key_input],
                outputs=[reasoning_output, tools_used_output, confidence_output, 
                        processing_time_output, final_answer_output, status_output]
            )
            
            # Tool testing
            test_agent_btn.click(
                self.test_agent_capabilities,
                inputs=[api_key_input],
                outputs=[tool_test_output]
            )
            
            # History management
            refresh_history_btn.click(
                self.get_conversation_history,
                outputs=[history_output]
            )
            
            clear_history_btn.click(
                self.clear_history,
                outputs=[history_output]
            )
            
            # Example buttons - Level 1
            math_btn.click(
                lambda: self.get_example_question(1, "math"),
                outputs=[question_input, difficulty_slider]
            )
            factual_btn.click(
                lambda: self.get_example_question(1, "factual"),
                outputs=[question_input, difficulty_slider]
            )
            convert_btn.click(
                lambda: self.get_example_question(1, "conversion"),
                outputs=[question_input, difficulty_slider]
            )
            
            # Example buttons - Level 2
            finance_btn.click(
                lambda: self.get_example_question(2, "financial"),
                outputs=[question_input, difficulty_slider]
            )
            current_btn.click(
                lambda: self.get_example_question(2, "current"),
                outputs=[question_input, difficulty_slider]
            )
            analysis_btn.click(
                lambda: self.get_example_question(2, "analysis"),
                outputs=[question_input, difficulty_slider]
            )
            
            # Example buttons - Level 3
            complex_btn.click(
                lambda: self.get_example_question(3, "complex"),
                outputs=[question_input, difficulty_slider]
            )
            research_btn.click(
                lambda: self.get_example_question(3, "research"),
                outputs=[question_input, difficulty_slider]
            )
            multimodal_btn.click(
                lambda: self.get_example_question(3, "multimodal"),
                outputs=[question_input, difficulty_slider]
            )
            
            # Footer
            gr.HTML(f"""
                <div style="text-align: center; margin-top: 40px; padding: 20px; background-color: #f8f9fa; border-radius: 10px;">
                    <h3>๐ŸŽ“ Hugging Face Agents Course - Unit 4 Final Assignment</h3>
                    <p><strong>Gemini GAIA Benchmark Agent</strong> | Created with โค๏ธ by {self.agent_info['author']}</p>
                    <p>๐Ÿ”— <a href="{self.agent_code_link}" target="_blank">View Source Code</a> | 
                       ๐Ÿ“š <a href="https://huggingface.co/learn/agents-course" target="_blank">Course Materials</a> |
                       ๐Ÿค– <a href="https://makersuite.google.com/" target="_blank">Google AI Studio</a></p>
                    <p><em>Powered by Google Gemini 1.5 Pro โ€ข Built with Gradio โ€ข Current Time (UTC): 2025-06-17 15:32:22</em></p>
                </div>
            """)
        
        return interface

def main():
    """Main function to launch the Gemini GAIA application"""
    
    # Configure logging
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
    )
    
    logger.info("๐Ÿš€ Starting Gemini GAIA Benchmark Agent Application...")
    
    # Create the application
    app = GeminiGAIAApp()
    interface = app.create_interface()
    
    # Launch configuration for Hugging Face Spaces
    launch_kwargs = {
        "share": True,  # Create public shareable link
        "server_name": "0.0.0.0",  # Allow external connections  
        "server_port": 7860,  # Default Gradio port
        "show_error": True,  # Show errors in UI
        "quiet": False,  # Show startup logs
        "favicon_path": None,  # Custom favicon
        "auth": None,  # No authentication required
    }
    
    logger.info("๐ŸŒ Launching Gradio interface...")
    logger.info("๐Ÿ”— The app will be available at http://localhost:7860")
    
    try:
        interface.launch(**launch_kwargs)
    except Exception as e:
        logger.error(f"โŒ Failed to launch application: {str(e)}")
        print("Please check your environment setup and try again.")

if __name__ == "__main__":
    main()