sgbaird's picture
revert predict wrapper
2423e7a
import gradio as gr
from sklearn.multioutput import MultiOutputRegressor
from sklearn.datasets import load_linnerud
from sklearn.multioutput import MultiOutputRegressor
from sklearn.linear_model import Ridge
X, y = load_linnerud(return_X_y=True, as_frame=True)
regr = MultiOutputRegressor(Ridge(random_state=123)).fit(X, y)
# example usage: regr.predict(X.iloc[[0]])
iface = gr.Interface(
title="MultiOutputRegressor Example",
fn=regr.predict,
inputs=gr.Dataframe(
value=X.head(1),
headers=list(X.columns),
col_count=(X.shape[1], "fixed"),
row_count=(1, "dynamic"),
datatype=X.dtypes.apply(str).replace("float64", "number").values.tolist(),
),
outputs=gr.Numpy(
value=regr.predict(X.head(1)),
headers=list(y.columns),
col_count=(y.shape[1], "fixed"),
datatype=y.dtypes.apply(str).replace("float64", "number").values.tolist(),
),
)
iface.launch()
# %% Code Graveyard
# def predict(X):
# max_rows = 100000
# if X.shape[0] > max_rows:
# raise ValueError(
# f"Too many rows ({X.shape[0]}), please use less than {max_rows} rows."
# )
# return regr.predict(X)