Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from sklearn.multioutput import MultiOutputRegressor | |
| from sklearn.datasets import load_linnerud | |
| from sklearn.multioutput import MultiOutputRegressor | |
| from sklearn.linear_model import Ridge | |
| X, y = load_linnerud(return_X_y=True, as_frame=True) | |
| regr = MultiOutputRegressor(Ridge(random_state=123)).fit(X, y) | |
| # example usage: regr.predict(X.iloc[[0]]) | |
| iface = gr.Interface( | |
| title="MultiOutputRegressor Example", | |
| fn=regr.predict, | |
| inputs=gr.Dataframe( | |
| value=X.head(1), | |
| headers=list(X.columns), | |
| col_count=(X.shape[1], "fixed"), | |
| row_count=(1, "dynamic"), | |
| datatype=X.dtypes.apply(str).replace("float64", "number").values.tolist(), | |
| ), | |
| outputs=gr.Numpy( | |
| value=regr.predict(X.head(1)), | |
| headers=list(y.columns), | |
| col_count=(y.shape[1], "fixed"), | |
| datatype=y.dtypes.apply(str).replace("float64", "number").values.tolist(), | |
| ), | |
| ) | |
| iface.launch() | |
| # %% Code Graveyard | |
| # def predict(X): | |
| # max_rows = 100000 | |
| # if X.shape[0] > max_rows: | |
| # raise ValueError( | |
| # f"Too many rows ({X.shape[0]}), please use less than {max_rows} rows." | |
| # ) | |
| # return regr.predict(X) | |