from flask import Flask, render_template, request, send_file, redirect, url_for import pandas as pd import matplotlib.pyplot as plt import numpy as np import io import os app = Flask(__name__) # Cache data_cache = { "df1": None, "limits": {}, "cols": [], "golden_loaded": False, "comparison_file": None } def process_golden_file(golden_file): """Load Golden data and extract limits.""" limits_df1 = pd.read_excel(golden_file, nrows=4) df1 = pd.read_excel(golden_file) df1 = df1.drop([0, 1, 2, 3]) df1 = df1.apply(pd.to_numeric, errors="coerce") limits_df1 = limits_df1.drop([0]) ignore_cols = ["SITE_NUM", "PART_ID", "PASSFG", "SOFT_BIN", "T_TIME", "TEST_NUM"] cols_to_plot = [col for col in limits_df1.columns if "_" in col and col not in ignore_cols] limits_df1 = limits_df1.drop(columns=ignore_cols) limits = { col: {"LL": limits_df1.iloc[0][col], "UL": limits_df1.iloc[1][col]} for col in limits_df1.columns } data_cache.update({ "df1": df1, "limits": limits, "cols": cols_to_plot, "golden_loaded": True }) def process_test_file(test_file): """Load Test data.""" df2 = pd.read_excel(test_file) df2 = df2.drop([0, 1, 2, 3]) df2 = df2.apply(pd.to_numeric, errors="coerce") return df2 def generate_comparison_excel(df2): """Generate comparison Excel (mean, std, min, max for both).""" df1 = data_cache["df1"] ignore_cols = ["SITE_NUM", "PART_ID", "PASSFG", "SOFT_BIN", "T_TIME", "TEST_NUM"] # cols_to_plot = [col for col in limits_df1.columns if "_" in col and col not in ignore_cols] # common_cols = [ignore_cols = ["SITE_NUM", "PART_ID", "PASSFG", "SOFT_BIN", "T_TIME", "TEST_NUM"] common_cols = [col for col in df1.columns if "_" in col and col not in ignore_cols] # common_cols = [c for c in df1.columns if c in df2.columns] summary = [] for col in common_cols: g_mean, t_mean = df1[col].mean(), df2[col].mean() g_std, t_std = df1[col].std(), df2[col].std() g_min, t_min = df1[col].min(), df2[col].min() g_max, t_max = df1[col].max(), df2[col].max() diff = t_mean - g_mean if pd.notna(t_mean) and pd.notna(g_mean) else np.nan summary.append([col, g_mean, t_mean, diff, g_std, t_std, g_min, t_min, g_max, t_max]) comp_df = pd.DataFrame(summary, columns=[ "Parameter", "Golden_Mean", "Test_Mean", "Mean_Diff", "Golden_Std", "Test_Std", "Golden_Min", "Test_Min", "Golden_Max", "Test_Max" ]) path = "comparison_result.xlsx" comp_df.to_excel(path, index=False) data_cache["comparison_file"] = path def generate_plot(df2, col): """Generate and return a plot comparing Golden vs Test.""" df1, limits = data_cache["df1"], data_cache["limits"] plt.figure(figsize=(6, 4)) x1 = np.arange(1, len(df1[col]) + 1) plt.plot(x1, df1[col], 'o-', label="Golden", color='blue') if col in df2.columns: x2 = np.arange(1, len(df2[col]) + 1) plt.plot(x2, df2[col], 's--', label="Test", color='red') if col in limits: ll, ul = limits[col]["LL"], limits[col]["UL"] plt.axhline(ll, color='green', linestyle='--', label='LL') plt.axhline(ul, color='orange', linestyle='--', label='UL') plt.title(f"{col}") plt.xlabel("Part # (sequence)") plt.ylabel("Value") plt.legend(fontsize='small') plt.grid(True, linestyle='--', alpha=0.7) plt.xticks(np.arange(1, len(df1[col]) + 1)) plt.tight_layout() buf = io.BytesIO() plt.savefig(buf, format='png', bbox_inches='tight') buf.seek(0) plt.close() return buf @app.route("/", methods=["GET", "POST"]) def index(): if request.method == "POST": # Upload Golden first if not data_cache["golden_loaded"]: golden_file = request.files.get("golden_file") if not golden_file: return render_template("index.html", error="Please upload Golden file.") try: process_golden_file(golden_file) return redirect(url_for("index")) # return render_template("index.html", message="Golden data loaded successfully!") except Exception as e: return render_template("index.html", error=f"Error loading Golden file: {e}") # Upload Test data next else: test_file = request.files.get("test_file") if not test_file: return render_template("index.html", error="Please upload Test data.") try: df2 = process_test_file(test_file) data_cache["df2_temp"] = df2 generate_comparison_excel(df2) return render_template( "plot.html", cols=data_cache["cols"], file_ready=True ) except Exception as e: return render_template("index.html", error=f"Error processing Test file: {e}") return render_template("index.html", golden_loaded=data_cache["golden_loaded"]) @app.route("/plot_image/