Spaces:
Runtime error
Runtime error
add number of rows parameters
Browse files- app.py +2 -1
- cldm/glyph_control.py +0 -230
app.py
CHANGED
|
@@ -112,7 +112,8 @@ with block:
|
|
| 112 |
exec(f"""top_left_x_{i} = gr.Slider(label="Bbox Top Left x", minimum=0., maximum=1, value={0.35 - 0.25 * math.cos(math.pi * i)}, step=0.01) """)
|
| 113 |
exec(f"""top_left_y_{i} = gr.Slider(label="Bbox Top Left y", minimum=0., maximum=1, value={0.1 if i < 2 else 0.6}, step=0.01) """)
|
| 114 |
exec(f"""yaw_{i} = gr.Slider(label="Bbox Yaw", minimum=-180, maximum=180, value=0, step=5) """)
|
| 115 |
-
exec(f"""num_rows_{i} = gr.Slider(label="num_rows", minimum=1, maximum=4, value=1, step=1, visible=False) """)
|
|
|
|
| 116 |
|
| 117 |
with gr.Row():
|
| 118 |
with gr.Column():
|
|
|
|
| 112 |
exec(f"""top_left_x_{i} = gr.Slider(label="Bbox Top Left x", minimum=0., maximum=1, value={0.35 - 0.25 * math.cos(math.pi * i)}, step=0.01) """)
|
| 113 |
exec(f"""top_left_y_{i} = gr.Slider(label="Bbox Top Left y", minimum=0., maximum=1, value={0.1 if i < 2 else 0.6}, step=0.01) """)
|
| 114 |
exec(f"""yaw_{i} = gr.Slider(label="Bbox Yaw", minimum=-180, maximum=180, value=0, step=5) """)
|
| 115 |
+
# exec(f"""num_rows_{i} = gr.Slider(label="num_rows", minimum=1, maximum=4, value=1, step=1, visible=False) """)
|
| 116 |
+
exec(f"""num_rows_{i} = gr.Slider(label="num_rows", minimum=1, maximum=4, value=1, step=1) """)
|
| 117 |
|
| 118 |
with gr.Row():
|
| 119 |
with gr.Column():
|
cldm/glyph_control.py
DELETED
|
@@ -1,230 +0,0 @@
|
|
| 1 |
-
import torch.nn as nn
|
| 2 |
-
from ldm.modules.encoders.modules import OpenCLIPImageEmbedder, FrozenOpenCLIPEmbedder
|
| 3 |
-
from ldm.util import instantiate_from_config
|
| 4 |
-
import torch
|
| 5 |
-
from taming.models.vqgan import VQModelInterfaceEncoder, VQModel
|
| 6 |
-
from ldm.modules.attention import SpatialTransformer
|
| 7 |
-
from ldm.modules.attention import Normalize, BasicTransformerBlock#, exists
|
| 8 |
-
from ldm.modules.diffusionmodules.util import zero_module, identity_init_fc, conv_nd
|
| 9 |
-
from einops import rearrange
|
| 10 |
-
# from ldm.modules.diffusionmodules.openaimodel import TimestepEmbedSequential
|
| 11 |
-
def disabled_train(self, mode=True):
|
| 12 |
-
"""Overwrite model.train with this function to make sure train/eval mode
|
| 13 |
-
does not change anymore."""
|
| 14 |
-
return self
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
def make_zero_conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
|
| 19 |
-
return zero_module(conv_nd(2, in_channels, out_channels, kernel_size, stride=stride, padding=padding))
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
class SpatialTransformer_v2(nn.Module):
|
| 23 |
-
"""
|
| 24 |
-
Transformer block for image-like data.
|
| 25 |
-
First, project the input (aka embedding)
|
| 26 |
-
and reshape to b, t, d.
|
| 27 |
-
Then apply standard transformer action.
|
| 28 |
-
Finally, reshape to image
|
| 29 |
-
NEW: use_linear for more efficiency instead of the 1x1 convs
|
| 30 |
-
"""
|
| 31 |
-
def __init__(self, in_channels, n_heads, d_head,
|
| 32 |
-
depth=1, dropout=0., context_dim=None,
|
| 33 |
-
disable_self_attn=False, use_linear=False,
|
| 34 |
-
use_checkpoint=True):
|
| 35 |
-
super().__init__()
|
| 36 |
-
# change:
|
| 37 |
-
# if exists(context_dim) and not isinstance(context_dim, list):
|
| 38 |
-
if not isinstance(context_dim, list):
|
| 39 |
-
context_dim = [context_dim]
|
| 40 |
-
self.in_channels = in_channels
|
| 41 |
-
inner_dim = n_heads * d_head
|
| 42 |
-
self.norm = Normalize(in_channels)
|
| 43 |
-
if not use_linear:
|
| 44 |
-
self.proj_in = nn.Conv2d(in_channels,
|
| 45 |
-
inner_dim,
|
| 46 |
-
kernel_size=1,
|
| 47 |
-
stride=1,
|
| 48 |
-
padding=0)
|
| 49 |
-
else:
|
| 50 |
-
self.proj_in = nn.Linear(in_channels, inner_dim)
|
| 51 |
-
|
| 52 |
-
self.transformer_blocks = nn.ModuleList(
|
| 53 |
-
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
|
| 54 |
-
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
|
| 55 |
-
for d in range(depth)]
|
| 56 |
-
)
|
| 57 |
-
if not use_linear:
|
| 58 |
-
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
| 59 |
-
in_channels,
|
| 60 |
-
kernel_size=1,
|
| 61 |
-
stride=1,
|
| 62 |
-
padding=0))
|
| 63 |
-
else:
|
| 64 |
-
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels)) # change: switch
|
| 65 |
-
self.use_linear = use_linear
|
| 66 |
-
|
| 67 |
-
def forward(self, x, context=None):
|
| 68 |
-
# note: if no context is given, cross-attention defaults to self-attention
|
| 69 |
-
if not isinstance(context, list):
|
| 70 |
-
context = [context]
|
| 71 |
-
b, c, h, w = x.shape
|
| 72 |
-
x_in = x
|
| 73 |
-
x = self.norm(x)
|
| 74 |
-
if not self.use_linear:
|
| 75 |
-
x = self.proj_in(x)
|
| 76 |
-
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
| 77 |
-
if self.use_linear:
|
| 78 |
-
x = self.proj_in(x)
|
| 79 |
-
for i, block in enumerate(self.transformer_blocks):
|
| 80 |
-
x = block(x, context=context[i])
|
| 81 |
-
if self.use_linear:
|
| 82 |
-
x = self.proj_out(x)
|
| 83 |
-
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
| 84 |
-
if not self.use_linear:
|
| 85 |
-
x = self.proj_out(x)
|
| 86 |
-
return x + x_in
|
| 87 |
-
|
| 88 |
-
class trans_glyph_emb(nn.Module):
|
| 89 |
-
def __init__(self,
|
| 90 |
-
type = "fc", # "conv", "attn"
|
| 91 |
-
input_dim = 256,
|
| 92 |
-
out_dim = 1024,
|
| 93 |
-
# fc
|
| 94 |
-
fc_init = "zero",
|
| 95 |
-
# conv/attn
|
| 96 |
-
conv_ks = 3,
|
| 97 |
-
conv_pad = 1,
|
| 98 |
-
conv_stride = 1,
|
| 99 |
-
# attn
|
| 100 |
-
ch = 512, # 1024
|
| 101 |
-
num_heads = 8, # 16
|
| 102 |
-
dim_head = 64,
|
| 103 |
-
use_linear_in_transformer = True,
|
| 104 |
-
use_checkpoint = False, #True,
|
| 105 |
-
):
|
| 106 |
-
super().__init__()
|
| 107 |
-
|
| 108 |
-
if type == "fc":
|
| 109 |
-
self.model = torch.nn.Linear(input_dim, out_dim)
|
| 110 |
-
if fc_init == "zero":
|
| 111 |
-
self.model = zero_module(self.model)
|
| 112 |
-
elif fc_init == "identity":
|
| 113 |
-
self.model = identity_init_fc(self.model)
|
| 114 |
-
elif type == "conv":
|
| 115 |
-
self.model = make_zero_conv(input_dim, out_dim, conv_ks, stride = conv_stride, padding = conv_pad)
|
| 116 |
-
elif type == "attn":
|
| 117 |
-
model = [
|
| 118 |
-
# nn.Conv2d(input_dim, ch, 3, stride = 1, padding = 1),
|
| 119 |
-
nn.Conv2d(input_dim, ch, conv_ks, stride = conv_stride, padding = conv_pad),
|
| 120 |
-
SpatialTransformer_v2( #SpatialTransformer(
|
| 121 |
-
ch, num_heads, dim_head, depth=1, context_dim=None, #ch,
|
| 122 |
-
disable_self_attn=False, use_linear=use_linear_in_transformer,
|
| 123 |
-
use_checkpoint=use_checkpoint, # False if the context is None
|
| 124 |
-
),
|
| 125 |
-
make_zero_conv(ch, out_dim, 1, stride = 1, padding = 0)
|
| 126 |
-
# make_zero_conv(ch, out_dim, conv_ks, stride = conv_stride, padding = conv_pad)
|
| 127 |
-
]
|
| 128 |
-
self.model = nn.Sequential(*model)
|
| 129 |
-
self.model_type = type
|
| 130 |
-
|
| 131 |
-
def forward(self, x):
|
| 132 |
-
if self.model_type == "fc":
|
| 133 |
-
# b, c, h, w = x.shape
|
| 134 |
-
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
| 135 |
-
x = self.model(x)
|
| 136 |
-
# x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
| 137 |
-
# return x
|
| 138 |
-
else:
|
| 139 |
-
x = self.model(x)
|
| 140 |
-
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
| 141 |
-
return x
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
class glyph_control(nn.Module):
|
| 146 |
-
def __init__(self,
|
| 147 |
-
image_encoder = "CLIP", # "VQGAN"
|
| 148 |
-
image_encoder_config = None,
|
| 149 |
-
fuse_way = "concat",
|
| 150 |
-
load_text_encoder = False,
|
| 151 |
-
text_encoder_config = None,
|
| 152 |
-
freeze_image_encoder = True,
|
| 153 |
-
trans_emb = False,
|
| 154 |
-
trans_emb_config = None,
|
| 155 |
-
# use_fp16 = False,
|
| 156 |
-
):
|
| 157 |
-
super().__init__()
|
| 158 |
-
if image_encoder_config is not None:
|
| 159 |
-
image_encoder_config.params.freeze = freeze_image_encoder
|
| 160 |
-
self.image_encoder = instantiate_from_config(image_encoder_config)
|
| 161 |
-
else:
|
| 162 |
-
if image_encoder == "CLIP":
|
| 163 |
-
self.image_encoder = OpenCLIPImageEmbedder(freeze=freeze_image_encoder)
|
| 164 |
-
elif image_encoder == "VQGAN":
|
| 165 |
-
print("VQGAN glyph image encoder is missing config")
|
| 166 |
-
raise ValueError
|
| 167 |
-
else:
|
| 168 |
-
print("Other types of glyph image encoder are not supported")
|
| 169 |
-
raise ValueError
|
| 170 |
-
|
| 171 |
-
if freeze_image_encoder:
|
| 172 |
-
self.freeze_imenc()
|
| 173 |
-
self.freeze_image_encoder = freeze_image_encoder
|
| 174 |
-
self.image_encoder_type = image_encoder
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
if load_text_encoder:
|
| 178 |
-
if text_encoder_config is None:
|
| 179 |
-
self.text_encoder = FrozenOpenCLIPEmbedder()
|
| 180 |
-
else:
|
| 181 |
-
self.text_encoder = instantiate_from_config(text_encoder_config)
|
| 182 |
-
self.fuse_way = fuse_way
|
| 183 |
-
# self.dtype = torch.float16 if use_fp16 else torch.float32
|
| 184 |
-
if trans_emb:
|
| 185 |
-
if trans_emb_config is not None:
|
| 186 |
-
self.trans_glyph_emb_model = instantiate_from_config(trans_emb_config)
|
| 187 |
-
else:
|
| 188 |
-
self.trans_glyph_emb_model = trans_glyph_emb()
|
| 189 |
-
else:
|
| 190 |
-
self.trans_glyph_emb_model = None
|
| 191 |
-
|
| 192 |
-
def freeze_imenc(self):
|
| 193 |
-
self.image_encoder = self.image_encoder.eval()
|
| 194 |
-
self.image_encoder.train = disabled_train
|
| 195 |
-
for param in self.image_encoder.parameters():
|
| 196 |
-
param.requires_grad = False
|
| 197 |
-
|
| 198 |
-
def forward(self, glyph_image, text = None, text_embed = None):
|
| 199 |
-
clgim_num_list = [img.shape[0] for img in glyph_image]
|
| 200 |
-
# image_embeds = self.image_encoder(torch.concat(glyph_image, dim=0))
|
| 201 |
-
gim_concat = torch.concat(glyph_image, dim=0)
|
| 202 |
-
image_embeds = self.image_encoder(gim_concat)
|
| 203 |
-
if self.trans_glyph_emb_model is not None:
|
| 204 |
-
image_embeds = self.trans_glyph_emb_model(image_embeds)
|
| 205 |
-
image_embeds = torch.split(image_embeds, clgim_num_list)
|
| 206 |
-
max_image_tokens = max(clgim_num_list)
|
| 207 |
-
pad_image_embeds = []
|
| 208 |
-
for image_embed in image_embeds:
|
| 209 |
-
if image_embed.shape[0] < max_image_tokens:
|
| 210 |
-
image_embed = torch.concat([
|
| 211 |
-
image_embed,
|
| 212 |
-
torch.zeros(
|
| 213 |
-
(max_image_tokens - image_embed.shape[0], *image_embed.shape[1:]), device=image_embed.device, dtype=image_embed.dtype, # add dtype
|
| 214 |
-
)], dim=0
|
| 215 |
-
)
|
| 216 |
-
pad_image_embeds.append(image_embed)
|
| 217 |
-
pad_image_embeds = torch.stack(pad_image_embeds, dim = 0)
|
| 218 |
-
if text_embed is None:
|
| 219 |
-
assert self.text_encoder, text is not None
|
| 220 |
-
text_embed = self.text_encoder(text)
|
| 221 |
-
if self.fuse_way == "concat":
|
| 222 |
-
assert pad_image_embeds.shape[-1] == text_embed.shape[-1]
|
| 223 |
-
if len(pad_image_embeds.shape) == 4:
|
| 224 |
-
b, _, _ , embdim = pad_image_embeds.shape
|
| 225 |
-
pad_image_embeds = pad_image_embeds.view(b, -1, embdim)
|
| 226 |
-
out_embed = torch.concat([text_embed, pad_image_embeds], dim= 1)
|
| 227 |
-
print("concat glyph_embed with text_embed:", out_embed.shape)
|
| 228 |
-
return out_embed
|
| 229 |
-
else:
|
| 230 |
-
raise ValueError("Not support other fuse ways for now!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|