Spaces:
Runtime error
Runtime error
archive the files.
Browse files- app.py +6 -15
- laion10M_epoch_6_model_wo_ema.ckpt → checkpoints/laion10M_epoch_6_model_wo_ema.ckpt +0 -0
- textcaps5K_epoch_10_model_wo_ema.ckpt → checkpoints/textcaps5K_epoch_10_model_wo_ema.ckpt +0 -0
- textcaps5K_epoch_20_model_wo_ema.ckpt → checkpoints/textcaps5K_epoch_20_model_wo_ema.ckpt +0 -0
- textcaps5K_epoch_40_model_wo_ema.ckpt → checkpoints/textcaps5K_epoch_40_model_wo_ema.ckpt +0 -0
- cldm/ddim_hacked.py +0 -8
- config_ema.yaml +0 -88
- config_ema_unlock.yaml +0 -88
- ldm/models/ldm_autoencoder.py +0 -443
app.py
CHANGED
|
@@ -8,7 +8,7 @@ import torch
|
|
| 8 |
import time
|
| 9 |
from PIL import Image
|
| 10 |
from cldm.hack import disable_verbosity, enable_sliced_attention
|
| 11 |
-
from pytorch_lightning import seed_everything
|
| 12 |
|
| 13 |
def process_multi_wrapper(rendered_txt_0, rendered_txt_1, rendered_txt_2, rendered_txt_3,
|
| 14 |
shared_prompt,
|
|
@@ -87,13 +87,13 @@ def load_ckpt(model_ckpt = "LAION-Glyph-10M-Epoch-5"):
|
|
| 87 |
# if model_ckpt == "LAION-Glyph-10M-Epoch-5":
|
| 88 |
# model = load_model_ckpt(model, "laion10M_epoch_5_model_wo_ema.ckpt")
|
| 89 |
if model_ckpt == "LAION-Glyph-10M-Epoch-6":
|
| 90 |
-
model = load_model_ckpt(model, "laion10M_epoch_6_model_wo_ema.ckpt")
|
| 91 |
elif model_ckpt == "TextCaps-5K-Epoch-10":
|
| 92 |
-
model = load_model_ckpt(model, "textcaps5K_epoch_10_model_wo_ema.ckpt")
|
| 93 |
elif model_ckpt == "TextCaps-5K-Epoch-20":
|
| 94 |
-
model = load_model_ckpt(model, "textcaps5K_epoch_20_model_wo_ema.ckpt")
|
| 95 |
elif model_ckpt == "TextCaps-5K-Epoch-40":
|
| 96 |
-
model = load_model_ckpt(model, "textcaps5K_epoch_40_model_wo_ema.ckpt")
|
| 97 |
|
| 98 |
render_tool = Render_Text(model, save_memory = SAVE_MEMORY)
|
| 99 |
output_str = f"already change the model checkpoint to {model_ckpt}"
|
|
@@ -107,20 +107,11 @@ def load_ckpt(model_ckpt = "LAION-Glyph-10M-Epoch-5"):
|
|
| 107 |
return output_str, None, allow_run_generation
|
| 108 |
|
| 109 |
SAVE_MEMORY = False
|
| 110 |
-
shared_seed = 0
|
| 111 |
-
if shared_seed == -1:
|
| 112 |
-
shared_seed = random.randint(0, 65535)
|
| 113 |
-
seed_everything(shared_seed)
|
| 114 |
-
|
| 115 |
disable_verbosity()
|
| 116 |
if SAVE_MEMORY:
|
| 117 |
enable_sliced_attention()
|
| 118 |
cfg = OmegaConf.load("config.yaml")
|
| 119 |
-
model = load_model_from_config(cfg, "laion10M_epoch_6_model_wo_ema.ckpt", verbose=True)
|
| 120 |
-
# model = load_model_from_config(cfg, "model_wo_ema.ckpt", verbose=True)
|
| 121 |
-
# model = load_model_from_config(cfg, "model_states.pt", verbose=True)
|
| 122 |
-
# model = load_model_from_config(cfg, "model.ckpt", verbose=True)
|
| 123 |
-
# ddim_sampler = DDIMSampler(model)
|
| 124 |
render_tool = Render_Text(model, save_memory = SAVE_MEMORY)
|
| 125 |
|
| 126 |
|
|
|
|
| 8 |
import time
|
| 9 |
from PIL import Image
|
| 10 |
from cldm.hack import disable_verbosity, enable_sliced_attention
|
| 11 |
+
# from pytorch_lightning import seed_everything
|
| 12 |
|
| 13 |
def process_multi_wrapper(rendered_txt_0, rendered_txt_1, rendered_txt_2, rendered_txt_3,
|
| 14 |
shared_prompt,
|
|
|
|
| 87 |
# if model_ckpt == "LAION-Glyph-10M-Epoch-5":
|
| 88 |
# model = load_model_ckpt(model, "laion10M_epoch_5_model_wo_ema.ckpt")
|
| 89 |
if model_ckpt == "LAION-Glyph-10M-Epoch-6":
|
| 90 |
+
model = load_model_ckpt(model, "checkpoints/laion10M_epoch_6_model_wo_ema.ckpt")
|
| 91 |
elif model_ckpt == "TextCaps-5K-Epoch-10":
|
| 92 |
+
model = load_model_ckpt(model, "checkpoints/textcaps5K_epoch_10_model_wo_ema.ckpt")
|
| 93 |
elif model_ckpt == "TextCaps-5K-Epoch-20":
|
| 94 |
+
model = load_model_ckpt(model, "checkpoints/textcaps5K_epoch_20_model_wo_ema.ckpt")
|
| 95 |
elif model_ckpt == "TextCaps-5K-Epoch-40":
|
| 96 |
+
model = load_model_ckpt(model, "checkpoints/textcaps5K_epoch_40_model_wo_ema.ckpt")
|
| 97 |
|
| 98 |
render_tool = Render_Text(model, save_memory = SAVE_MEMORY)
|
| 99 |
output_str = f"already change the model checkpoint to {model_ckpt}"
|
|
|
|
| 107 |
return output_str, None, allow_run_generation
|
| 108 |
|
| 109 |
SAVE_MEMORY = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
disable_verbosity()
|
| 111 |
if SAVE_MEMORY:
|
| 112 |
enable_sliced_attention()
|
| 113 |
cfg = OmegaConf.load("config.yaml")
|
| 114 |
+
model = load_model_from_config(cfg, "checkpoints/laion10M_epoch_6_model_wo_ema.ckpt", verbose=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
render_tool = Render_Text(model, save_memory = SAVE_MEMORY)
|
| 116 |
|
| 117 |
|
laion10M_epoch_6_model_wo_ema.ckpt → checkpoints/laion10M_epoch_6_model_wo_ema.ckpt
RENAMED
|
File without changes
|
textcaps5K_epoch_10_model_wo_ema.ckpt → checkpoints/textcaps5K_epoch_10_model_wo_ema.ckpt
RENAMED
|
File without changes
|
textcaps5K_epoch_20_model_wo_ema.ckpt → checkpoints/textcaps5K_epoch_20_model_wo_ema.ckpt
RENAMED
|
File without changes
|
textcaps5K_epoch_40_model_wo_ema.ckpt → checkpoints/textcaps5K_epoch_40_model_wo_ema.ckpt
RENAMED
|
File without changes
|
cldm/ddim_hacked.py
CHANGED
|
@@ -79,15 +79,7 @@ class DDIMSampler(object):
|
|
| 79 |
):
|
| 80 |
if conditioning is not None:
|
| 81 |
if isinstance(conditioning, dict):
|
| 82 |
-
# ctmp = conditioning[list(conditioning.keys())[0]]
|
| 83 |
-
# while isinstance(ctmp, list): ctmp = ctmp[0]
|
| 84 |
-
# cbs = ctmp.shape[0]
|
| 85 |
-
# if cbs != batch_size:
|
| 86 |
-
# print(f"Warning: Got {ctmp.shape[0]} conditionings but batch-size is {batch_size}")
|
| 87 |
-
# for ctmp in conditioning.values():
|
| 88 |
for key, ctmp in conditioning.items():
|
| 89 |
-
if key == "c_glyph":
|
| 90 |
-
continue
|
| 91 |
if ctmp is None:
|
| 92 |
continue
|
| 93 |
else:
|
|
|
|
| 79 |
):
|
| 80 |
if conditioning is not None:
|
| 81 |
if isinstance(conditioning, dict):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
for key, ctmp in conditioning.items():
|
|
|
|
|
|
|
| 83 |
if ctmp is None:
|
| 84 |
continue
|
| 85 |
else:
|
config_ema.yaml
DELETED
|
@@ -1,88 +0,0 @@
|
|
| 1 |
-
model:
|
| 2 |
-
base_learning_rate: 1.0e-6 #1.0e-5 #1.0e-4
|
| 3 |
-
target: cldm.cldm.ControlLDM
|
| 4 |
-
params:
|
| 5 |
-
linear_start: 0.00085
|
| 6 |
-
linear_end: 0.0120
|
| 7 |
-
num_timesteps_cond: 1
|
| 8 |
-
log_every_t: 200
|
| 9 |
-
timesteps: 1000
|
| 10 |
-
first_stage_key: "jpg"
|
| 11 |
-
cond_stage_key: "txt"
|
| 12 |
-
control_key: "hint"
|
| 13 |
-
image_size: 64
|
| 14 |
-
channels: 4
|
| 15 |
-
cond_stage_trainable: false
|
| 16 |
-
conditioning_key: crossattn
|
| 17 |
-
monitor: #val/loss_simple_ema
|
| 18 |
-
scale_factor: 0.18215
|
| 19 |
-
only_mid_control: False
|
| 20 |
-
sd_locked: True
|
| 21 |
-
use_ema: True #TODO: specify
|
| 22 |
-
|
| 23 |
-
control_stage_config:
|
| 24 |
-
target: cldm.cldm.ControlNet
|
| 25 |
-
params:
|
| 26 |
-
use_checkpoint: True
|
| 27 |
-
image_size: 32 # unused
|
| 28 |
-
in_channels: 4
|
| 29 |
-
hint_channels: 3
|
| 30 |
-
model_channels: 320
|
| 31 |
-
attention_resolutions: [ 4, 2, 1 ]
|
| 32 |
-
num_res_blocks: 2
|
| 33 |
-
channel_mult: [ 1, 2, 4, 4 ]
|
| 34 |
-
num_head_channels: 64 # need to fix for flash-attn
|
| 35 |
-
use_spatial_transformer: True
|
| 36 |
-
use_linear_in_transformer: True
|
| 37 |
-
transformer_depth: 1
|
| 38 |
-
context_dim: 1024
|
| 39 |
-
legacy: False
|
| 40 |
-
|
| 41 |
-
unet_config:
|
| 42 |
-
target: cldm.cldm.ControlledUnetModel
|
| 43 |
-
params:
|
| 44 |
-
use_checkpoint: True
|
| 45 |
-
image_size: 32 # unused
|
| 46 |
-
in_channels: 4
|
| 47 |
-
out_channels: 4
|
| 48 |
-
model_channels: 320
|
| 49 |
-
attention_resolutions: [ 4, 2, 1 ]
|
| 50 |
-
num_res_blocks: 2
|
| 51 |
-
channel_mult: [ 1, 2, 4, 4 ]
|
| 52 |
-
num_head_channels: 64 # need to fix for flash-attn
|
| 53 |
-
use_spatial_transformer: True
|
| 54 |
-
use_linear_in_transformer: True
|
| 55 |
-
transformer_depth: 1
|
| 56 |
-
context_dim: 1024
|
| 57 |
-
legacy: False
|
| 58 |
-
|
| 59 |
-
first_stage_config:
|
| 60 |
-
target: ldm.models.autoencoder.AutoencoderKL
|
| 61 |
-
params:
|
| 62 |
-
embed_dim: 4
|
| 63 |
-
monitor: val/rec_loss
|
| 64 |
-
ddconfig:
|
| 65 |
-
#attn_type: "vanilla-xformers"
|
| 66 |
-
double_z: true
|
| 67 |
-
z_channels: 4
|
| 68 |
-
resolution: 256
|
| 69 |
-
in_channels: 3
|
| 70 |
-
out_ch: 3
|
| 71 |
-
ch: 128
|
| 72 |
-
ch_mult:
|
| 73 |
-
- 1
|
| 74 |
-
- 2
|
| 75 |
-
- 4
|
| 76 |
-
- 4
|
| 77 |
-
num_res_blocks: 2
|
| 78 |
-
attn_resolutions: []
|
| 79 |
-
dropout: 0.0
|
| 80 |
-
lossconfig:
|
| 81 |
-
target: torch.nn.Identity
|
| 82 |
-
|
| 83 |
-
cond_stage_config:
|
| 84 |
-
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
| 85 |
-
params:
|
| 86 |
-
freeze: True
|
| 87 |
-
layer: "penultimate"
|
| 88 |
-
# device: "cpu" #TODO: specify
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config_ema_unlock.yaml
DELETED
|
@@ -1,88 +0,0 @@
|
|
| 1 |
-
model:
|
| 2 |
-
base_learning_rate: 1.0e-6 #1.0e-5 #1.0e-4
|
| 3 |
-
target: cldm.cldm.ControlLDM
|
| 4 |
-
params:
|
| 5 |
-
linear_start: 0.00085
|
| 6 |
-
linear_end: 0.0120
|
| 7 |
-
num_timesteps_cond: 1
|
| 8 |
-
log_every_t: 200
|
| 9 |
-
timesteps: 1000
|
| 10 |
-
first_stage_key: "jpg"
|
| 11 |
-
cond_stage_key: "txt"
|
| 12 |
-
control_key: "hint"
|
| 13 |
-
image_size: 64
|
| 14 |
-
channels: 4
|
| 15 |
-
cond_stage_trainable: false
|
| 16 |
-
conditioning_key: crossattn
|
| 17 |
-
monitor: #val/loss_simple_ema
|
| 18 |
-
scale_factor: 0.18215
|
| 19 |
-
only_mid_control: False
|
| 20 |
-
sd_locked: False #True
|
| 21 |
-
use_ema: True #TODO: specify
|
| 22 |
-
|
| 23 |
-
control_stage_config:
|
| 24 |
-
target: cldm.cldm.ControlNet
|
| 25 |
-
params:
|
| 26 |
-
use_checkpoint: True
|
| 27 |
-
image_size: 32 # unused
|
| 28 |
-
in_channels: 4
|
| 29 |
-
hint_channels: 3
|
| 30 |
-
model_channels: 320
|
| 31 |
-
attention_resolutions: [ 4, 2, 1 ]
|
| 32 |
-
num_res_blocks: 2
|
| 33 |
-
channel_mult: [ 1, 2, 4, 4 ]
|
| 34 |
-
num_head_channels: 64 # need to fix for flash-attn
|
| 35 |
-
use_spatial_transformer: True
|
| 36 |
-
use_linear_in_transformer: True
|
| 37 |
-
transformer_depth: 1
|
| 38 |
-
context_dim: 1024
|
| 39 |
-
legacy: False
|
| 40 |
-
|
| 41 |
-
unet_config:
|
| 42 |
-
target: cldm.cldm.ControlledUnetModel
|
| 43 |
-
params:
|
| 44 |
-
use_checkpoint: True
|
| 45 |
-
image_size: 32 # unused
|
| 46 |
-
in_channels: 4
|
| 47 |
-
out_channels: 4
|
| 48 |
-
model_channels: 320
|
| 49 |
-
attention_resolutions: [ 4, 2, 1 ]
|
| 50 |
-
num_res_blocks: 2
|
| 51 |
-
channel_mult: [ 1, 2, 4, 4 ]
|
| 52 |
-
num_head_channels: 64 # need to fix for flash-attn
|
| 53 |
-
use_spatial_transformer: True
|
| 54 |
-
use_linear_in_transformer: True
|
| 55 |
-
transformer_depth: 1
|
| 56 |
-
context_dim: 1024
|
| 57 |
-
legacy: False
|
| 58 |
-
|
| 59 |
-
first_stage_config:
|
| 60 |
-
target: ldm.models.autoencoder.AutoencoderKL
|
| 61 |
-
params:
|
| 62 |
-
embed_dim: 4
|
| 63 |
-
monitor: val/rec_loss
|
| 64 |
-
ddconfig:
|
| 65 |
-
#attn_type: "vanilla-xformers"
|
| 66 |
-
double_z: true
|
| 67 |
-
z_channels: 4
|
| 68 |
-
resolution: 256
|
| 69 |
-
in_channels: 3
|
| 70 |
-
out_ch: 3
|
| 71 |
-
ch: 128
|
| 72 |
-
ch_mult:
|
| 73 |
-
- 1
|
| 74 |
-
- 2
|
| 75 |
-
- 4
|
| 76 |
-
- 4
|
| 77 |
-
num_res_blocks: 2
|
| 78 |
-
attn_resolutions: []
|
| 79 |
-
dropout: 0.0
|
| 80 |
-
lossconfig:
|
| 81 |
-
target: torch.nn.Identity
|
| 82 |
-
|
| 83 |
-
cond_stage_config:
|
| 84 |
-
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
| 85 |
-
params:
|
| 86 |
-
freeze: True
|
| 87 |
-
layer: "penultimate"
|
| 88 |
-
# device: "cpu" #TODO: specify
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ldm/models/ldm_autoencoder.py
DELETED
|
@@ -1,443 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import pytorch_lightning as pl
|
| 3 |
-
import torch.nn.functional as F
|
| 4 |
-
from contextlib import contextmanager
|
| 5 |
-
|
| 6 |
-
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
|
| 7 |
-
|
| 8 |
-
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
| 9 |
-
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
| 10 |
-
|
| 11 |
-
from ldm.util import instantiate_from_config
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
class VQModel(pl.LightningModule):
|
| 15 |
-
def __init__(self,
|
| 16 |
-
ddconfig,
|
| 17 |
-
lossconfig,
|
| 18 |
-
n_embed,
|
| 19 |
-
embed_dim,
|
| 20 |
-
ckpt_path=None,
|
| 21 |
-
ignore_keys=[],
|
| 22 |
-
image_key="image",
|
| 23 |
-
colorize_nlabels=None,
|
| 24 |
-
monitor=None,
|
| 25 |
-
batch_resize_range=None,
|
| 26 |
-
scheduler_config=None,
|
| 27 |
-
lr_g_factor=1.0,
|
| 28 |
-
remap=None,
|
| 29 |
-
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
| 30 |
-
use_ema=False
|
| 31 |
-
):
|
| 32 |
-
super().__init__()
|
| 33 |
-
self.embed_dim = embed_dim
|
| 34 |
-
self.n_embed = n_embed
|
| 35 |
-
self.image_key = image_key
|
| 36 |
-
self.encoder = Encoder(**ddconfig)
|
| 37 |
-
self.decoder = Decoder(**ddconfig)
|
| 38 |
-
self.loss = instantiate_from_config(lossconfig)
|
| 39 |
-
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
|
| 40 |
-
remap=remap,
|
| 41 |
-
sane_index_shape=sane_index_shape)
|
| 42 |
-
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
| 43 |
-
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
| 44 |
-
if colorize_nlabels is not None:
|
| 45 |
-
assert type(colorize_nlabels)==int
|
| 46 |
-
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
| 47 |
-
if monitor is not None:
|
| 48 |
-
self.monitor = monitor
|
| 49 |
-
self.batch_resize_range = batch_resize_range
|
| 50 |
-
if self.batch_resize_range is not None:
|
| 51 |
-
print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
|
| 52 |
-
|
| 53 |
-
self.use_ema = use_ema
|
| 54 |
-
if self.use_ema:
|
| 55 |
-
self.model_ema = LitEma(self)
|
| 56 |
-
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
| 57 |
-
|
| 58 |
-
if ckpt_path is not None:
|
| 59 |
-
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
| 60 |
-
self.scheduler_config = scheduler_config
|
| 61 |
-
self.lr_g_factor = lr_g_factor
|
| 62 |
-
|
| 63 |
-
@contextmanager
|
| 64 |
-
def ema_scope(self, context=None):
|
| 65 |
-
if self.use_ema:
|
| 66 |
-
self.model_ema.store(self.parameters())
|
| 67 |
-
self.model_ema.copy_to(self)
|
| 68 |
-
if context is not None:
|
| 69 |
-
print(f"{context}: Switched to EMA weights")
|
| 70 |
-
try:
|
| 71 |
-
yield None
|
| 72 |
-
finally:
|
| 73 |
-
if self.use_ema:
|
| 74 |
-
self.model_ema.restore(self.parameters())
|
| 75 |
-
if context is not None:
|
| 76 |
-
print(f"{context}: Restored training weights")
|
| 77 |
-
|
| 78 |
-
def init_from_ckpt(self, path, ignore_keys=list()):
|
| 79 |
-
sd = torch.load(path, map_location="cpu")["state_dict"]
|
| 80 |
-
keys = list(sd.keys())
|
| 81 |
-
for k in keys:
|
| 82 |
-
for ik in ignore_keys:
|
| 83 |
-
if k.startswith(ik):
|
| 84 |
-
print("Deleting key {} from state_dict.".format(k))
|
| 85 |
-
del sd[k]
|
| 86 |
-
missing, unexpected = self.load_state_dict(sd, strict=False)
|
| 87 |
-
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
| 88 |
-
if len(missing) > 0:
|
| 89 |
-
print(f"Missing Keys: {missing}")
|
| 90 |
-
print(f"Unexpected Keys: {unexpected}")
|
| 91 |
-
|
| 92 |
-
def on_train_batch_end(self, *args, **kwargs):
|
| 93 |
-
if self.use_ema:
|
| 94 |
-
self.model_ema(self)
|
| 95 |
-
|
| 96 |
-
def encode(self, x):
|
| 97 |
-
h = self.encoder(x)
|
| 98 |
-
h = self.quant_conv(h)
|
| 99 |
-
quant, emb_loss, info = self.quantize(h)
|
| 100 |
-
return quant, emb_loss, info
|
| 101 |
-
|
| 102 |
-
def encode_to_prequant(self, x):
|
| 103 |
-
h = self.encoder(x)
|
| 104 |
-
h = self.quant_conv(h)
|
| 105 |
-
return h
|
| 106 |
-
|
| 107 |
-
def decode(self, quant):
|
| 108 |
-
quant = self.post_quant_conv(quant)
|
| 109 |
-
dec = self.decoder(quant)
|
| 110 |
-
return dec
|
| 111 |
-
|
| 112 |
-
def decode_code(self, code_b):
|
| 113 |
-
quant_b = self.quantize.embed_code(code_b)
|
| 114 |
-
dec = self.decode(quant_b)
|
| 115 |
-
return dec
|
| 116 |
-
|
| 117 |
-
def forward(self, input, return_pred_indices=False):
|
| 118 |
-
quant, diff, (_,_,ind) = self.encode(input)
|
| 119 |
-
dec = self.decode(quant)
|
| 120 |
-
if return_pred_indices:
|
| 121 |
-
return dec, diff, ind
|
| 122 |
-
return dec, diff
|
| 123 |
-
|
| 124 |
-
def get_input(self, batch, k):
|
| 125 |
-
x = batch[k]
|
| 126 |
-
if len(x.shape) == 3:
|
| 127 |
-
x = x[..., None]
|
| 128 |
-
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
| 129 |
-
if self.batch_resize_range is not None:
|
| 130 |
-
lower_size = self.batch_resize_range[0]
|
| 131 |
-
upper_size = self.batch_resize_range[1]
|
| 132 |
-
if self.global_step <= 4:
|
| 133 |
-
# do the first few batches with max size to avoid later oom
|
| 134 |
-
new_resize = upper_size
|
| 135 |
-
else:
|
| 136 |
-
new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
|
| 137 |
-
if new_resize != x.shape[2]:
|
| 138 |
-
x = F.interpolate(x, size=new_resize, mode="bicubic")
|
| 139 |
-
x = x.detach()
|
| 140 |
-
return x
|
| 141 |
-
|
| 142 |
-
def training_step(self, batch, batch_idx, optimizer_idx):
|
| 143 |
-
# https://github.com/pytorch/pytorch/issues/37142
|
| 144 |
-
# try not to fool the heuristics
|
| 145 |
-
x = self.get_input(batch, self.image_key)
|
| 146 |
-
xrec, qloss, ind = self(x, return_pred_indices=True)
|
| 147 |
-
|
| 148 |
-
if optimizer_idx == 0:
|
| 149 |
-
# autoencode
|
| 150 |
-
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
| 151 |
-
last_layer=self.get_last_layer(), split="train",
|
| 152 |
-
predicted_indices=ind)
|
| 153 |
-
|
| 154 |
-
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
| 155 |
-
return aeloss
|
| 156 |
-
|
| 157 |
-
if optimizer_idx == 1:
|
| 158 |
-
# discriminator
|
| 159 |
-
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
| 160 |
-
last_layer=self.get_last_layer(), split="train")
|
| 161 |
-
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
| 162 |
-
return discloss
|
| 163 |
-
|
| 164 |
-
def validation_step(self, batch, batch_idx):
|
| 165 |
-
log_dict = self._validation_step(batch, batch_idx)
|
| 166 |
-
with self.ema_scope():
|
| 167 |
-
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
|
| 168 |
-
return log_dict
|
| 169 |
-
|
| 170 |
-
def _validation_step(self, batch, batch_idx, suffix=""):
|
| 171 |
-
x = self.get_input(batch, self.image_key)
|
| 172 |
-
xrec, qloss, ind = self(x, return_pred_indices=True)
|
| 173 |
-
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
|
| 174 |
-
self.global_step,
|
| 175 |
-
last_layer=self.get_last_layer(),
|
| 176 |
-
split="val"+suffix,
|
| 177 |
-
predicted_indices=ind
|
| 178 |
-
)
|
| 179 |
-
|
| 180 |
-
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
|
| 181 |
-
self.global_step,
|
| 182 |
-
last_layer=self.get_last_layer(),
|
| 183 |
-
split="val"+suffix,
|
| 184 |
-
predicted_indices=ind
|
| 185 |
-
)
|
| 186 |
-
rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
|
| 187 |
-
self.log(f"val{suffix}/rec_loss", rec_loss,
|
| 188 |
-
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
| 189 |
-
self.log(f"val{suffix}/aeloss", aeloss,
|
| 190 |
-
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
| 191 |
-
if version.parse(pl.__version__) >= version.parse('1.4.0'):
|
| 192 |
-
del log_dict_ae[f"val{suffix}/rec_loss"]
|
| 193 |
-
self.log_dict(log_dict_ae)
|
| 194 |
-
self.log_dict(log_dict_disc)
|
| 195 |
-
return self.log_dict
|
| 196 |
-
|
| 197 |
-
def configure_optimizers(self):
|
| 198 |
-
lr_d = self.learning_rate
|
| 199 |
-
lr_g = self.lr_g_factor*self.learning_rate
|
| 200 |
-
print("lr_d", lr_d)
|
| 201 |
-
print("lr_g", lr_g)
|
| 202 |
-
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
| 203 |
-
list(self.decoder.parameters())+
|
| 204 |
-
list(self.quantize.parameters())+
|
| 205 |
-
list(self.quant_conv.parameters())+
|
| 206 |
-
list(self.post_quant_conv.parameters()),
|
| 207 |
-
lr=lr_g, betas=(0.5, 0.9))
|
| 208 |
-
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
| 209 |
-
lr=lr_d, betas=(0.5, 0.9))
|
| 210 |
-
|
| 211 |
-
if self.scheduler_config is not None:
|
| 212 |
-
scheduler = instantiate_from_config(self.scheduler_config)
|
| 213 |
-
|
| 214 |
-
print("Setting up LambdaLR scheduler...")
|
| 215 |
-
scheduler = [
|
| 216 |
-
{
|
| 217 |
-
'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
|
| 218 |
-
'interval': 'step',
|
| 219 |
-
'frequency': 1
|
| 220 |
-
},
|
| 221 |
-
{
|
| 222 |
-
'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
|
| 223 |
-
'interval': 'step',
|
| 224 |
-
'frequency': 1
|
| 225 |
-
},
|
| 226 |
-
]
|
| 227 |
-
return [opt_ae, opt_disc], scheduler
|
| 228 |
-
return [opt_ae, opt_disc], []
|
| 229 |
-
|
| 230 |
-
def get_last_layer(self):
|
| 231 |
-
return self.decoder.conv_out.weight
|
| 232 |
-
|
| 233 |
-
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
|
| 234 |
-
log = dict()
|
| 235 |
-
x = self.get_input(batch, self.image_key)
|
| 236 |
-
x = x.to(self.device)
|
| 237 |
-
if only_inputs:
|
| 238 |
-
log["inputs"] = x
|
| 239 |
-
return log
|
| 240 |
-
xrec, _ = self(x)
|
| 241 |
-
if x.shape[1] > 3:
|
| 242 |
-
# colorize with random projection
|
| 243 |
-
assert xrec.shape[1] > 3
|
| 244 |
-
x = self.to_rgb(x)
|
| 245 |
-
xrec = self.to_rgb(xrec)
|
| 246 |
-
log["inputs"] = x
|
| 247 |
-
log["reconstructions"] = xrec
|
| 248 |
-
if plot_ema:
|
| 249 |
-
with self.ema_scope():
|
| 250 |
-
xrec_ema, _ = self(x)
|
| 251 |
-
if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
|
| 252 |
-
log["reconstructions_ema"] = xrec_ema
|
| 253 |
-
return log
|
| 254 |
-
|
| 255 |
-
def to_rgb(self, x):
|
| 256 |
-
assert self.image_key == "segmentation"
|
| 257 |
-
if not hasattr(self, "colorize"):
|
| 258 |
-
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
| 259 |
-
x = F.conv2d(x, weight=self.colorize)
|
| 260 |
-
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
| 261 |
-
return x
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
class VQModelInterface(VQModel):
|
| 265 |
-
def __init__(self, embed_dim, *args, **kwargs):
|
| 266 |
-
super().__init__(embed_dim=embed_dim, *args, **kwargs)
|
| 267 |
-
self.embed_dim = embed_dim
|
| 268 |
-
|
| 269 |
-
def encode(self, x):
|
| 270 |
-
h = self.encoder(x)
|
| 271 |
-
h = self.quant_conv(h)
|
| 272 |
-
return h
|
| 273 |
-
|
| 274 |
-
def decode(self, h, force_not_quantize=False):
|
| 275 |
-
# also go through quantization layer
|
| 276 |
-
if not force_not_quantize:
|
| 277 |
-
quant, emb_loss, info = self.quantize(h)
|
| 278 |
-
else:
|
| 279 |
-
quant = h
|
| 280 |
-
quant = self.post_quant_conv(quant)
|
| 281 |
-
dec = self.decoder(quant)
|
| 282 |
-
return dec
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
class AutoencoderKL(pl.LightningModule):
|
| 286 |
-
def __init__(self,
|
| 287 |
-
ddconfig,
|
| 288 |
-
lossconfig,
|
| 289 |
-
embed_dim,
|
| 290 |
-
ckpt_path=None,
|
| 291 |
-
ignore_keys=[],
|
| 292 |
-
image_key="image",
|
| 293 |
-
colorize_nlabels=None,
|
| 294 |
-
monitor=None,
|
| 295 |
-
):
|
| 296 |
-
super().__init__()
|
| 297 |
-
self.image_key = image_key
|
| 298 |
-
self.encoder = Encoder(**ddconfig)
|
| 299 |
-
self.decoder = Decoder(**ddconfig)
|
| 300 |
-
self.loss = instantiate_from_config(lossconfig)
|
| 301 |
-
assert ddconfig["double_z"]
|
| 302 |
-
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
| 303 |
-
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
| 304 |
-
self.embed_dim = embed_dim
|
| 305 |
-
if colorize_nlabels is not None:
|
| 306 |
-
assert type(colorize_nlabels)==int
|
| 307 |
-
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
| 308 |
-
if monitor is not None:
|
| 309 |
-
self.monitor = monitor
|
| 310 |
-
if ckpt_path is not None:
|
| 311 |
-
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
| 312 |
-
|
| 313 |
-
def init_from_ckpt(self, path, ignore_keys=list()):
|
| 314 |
-
sd = torch.load(path, map_location="cpu")["state_dict"]
|
| 315 |
-
keys = list(sd.keys())
|
| 316 |
-
for k in keys:
|
| 317 |
-
for ik in ignore_keys:
|
| 318 |
-
if k.startswith(ik):
|
| 319 |
-
print("Deleting key {} from state_dict.".format(k))
|
| 320 |
-
del sd[k]
|
| 321 |
-
self.load_state_dict(sd, strict=False)
|
| 322 |
-
print(f"Restored from {path}")
|
| 323 |
-
|
| 324 |
-
def encode(self, x):
|
| 325 |
-
h = self.encoder(x)
|
| 326 |
-
moments = self.quant_conv(h)
|
| 327 |
-
posterior = DiagonalGaussianDistribution(moments)
|
| 328 |
-
return posterior
|
| 329 |
-
|
| 330 |
-
def decode(self, z):
|
| 331 |
-
z = self.post_quant_conv(z)
|
| 332 |
-
dec = self.decoder(z)
|
| 333 |
-
return dec
|
| 334 |
-
|
| 335 |
-
def forward(self, input, sample_posterior=True):
|
| 336 |
-
posterior = self.encode(input)
|
| 337 |
-
if sample_posterior:
|
| 338 |
-
z = posterior.sample()
|
| 339 |
-
else:
|
| 340 |
-
z = posterior.mode()
|
| 341 |
-
dec = self.decode(z)
|
| 342 |
-
return dec, posterior
|
| 343 |
-
|
| 344 |
-
def get_input(self, batch, k):
|
| 345 |
-
x = batch[k]
|
| 346 |
-
if len(x.shape) == 3:
|
| 347 |
-
x = x[..., None]
|
| 348 |
-
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
| 349 |
-
return x
|
| 350 |
-
|
| 351 |
-
def training_step(self, batch, batch_idx, optimizer_idx):
|
| 352 |
-
inputs = self.get_input(batch, self.image_key)
|
| 353 |
-
reconstructions, posterior = self(inputs)
|
| 354 |
-
|
| 355 |
-
if optimizer_idx == 0:
|
| 356 |
-
# train encoder+decoder+logvar
|
| 357 |
-
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
| 358 |
-
last_layer=self.get_last_layer(), split="train")
|
| 359 |
-
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
| 360 |
-
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
| 361 |
-
return aeloss
|
| 362 |
-
|
| 363 |
-
if optimizer_idx == 1:
|
| 364 |
-
# train the discriminator
|
| 365 |
-
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
| 366 |
-
last_layer=self.get_last_layer(), split="train")
|
| 367 |
-
|
| 368 |
-
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
| 369 |
-
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
| 370 |
-
return discloss
|
| 371 |
-
|
| 372 |
-
def validation_step(self, batch, batch_idx):
|
| 373 |
-
inputs = self.get_input(batch, self.image_key)
|
| 374 |
-
reconstructions, posterior = self(inputs)
|
| 375 |
-
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
| 376 |
-
last_layer=self.get_last_layer(), split="val")
|
| 377 |
-
|
| 378 |
-
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
| 379 |
-
last_layer=self.get_last_layer(), split="val")
|
| 380 |
-
|
| 381 |
-
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
|
| 382 |
-
self.log_dict(log_dict_ae)
|
| 383 |
-
self.log_dict(log_dict_disc)
|
| 384 |
-
return self.log_dict
|
| 385 |
-
|
| 386 |
-
def configure_optimizers(self):
|
| 387 |
-
lr = self.learning_rate
|
| 388 |
-
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
| 389 |
-
list(self.decoder.parameters())+
|
| 390 |
-
list(self.quant_conv.parameters())+
|
| 391 |
-
list(self.post_quant_conv.parameters()),
|
| 392 |
-
lr=lr, betas=(0.5, 0.9))
|
| 393 |
-
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
| 394 |
-
lr=lr, betas=(0.5, 0.9))
|
| 395 |
-
return [opt_ae, opt_disc], []
|
| 396 |
-
|
| 397 |
-
def get_last_layer(self):
|
| 398 |
-
return self.decoder.conv_out.weight
|
| 399 |
-
|
| 400 |
-
@torch.no_grad()
|
| 401 |
-
def log_images(self, batch, only_inputs=False, **kwargs):
|
| 402 |
-
log = dict()
|
| 403 |
-
x = self.get_input(batch, self.image_key)
|
| 404 |
-
x = x.to(self.device)
|
| 405 |
-
if not only_inputs:
|
| 406 |
-
xrec, posterior = self(x)
|
| 407 |
-
if x.shape[1] > 3:
|
| 408 |
-
# colorize with random projection
|
| 409 |
-
assert xrec.shape[1] > 3
|
| 410 |
-
x = self.to_rgb(x)
|
| 411 |
-
xrec = self.to_rgb(xrec)
|
| 412 |
-
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
| 413 |
-
log["reconstructions"] = xrec
|
| 414 |
-
log["inputs"] = x
|
| 415 |
-
return log
|
| 416 |
-
|
| 417 |
-
def to_rgb(self, x):
|
| 418 |
-
assert self.image_key == "segmentation"
|
| 419 |
-
if not hasattr(self, "colorize"):
|
| 420 |
-
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
| 421 |
-
x = F.conv2d(x, weight=self.colorize)
|
| 422 |
-
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
| 423 |
-
return x
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
class IdentityFirstStage(torch.nn.Module):
|
| 427 |
-
def __init__(self, *args, vq_interface=False, **kwargs):
|
| 428 |
-
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
|
| 429 |
-
super().__init__()
|
| 430 |
-
|
| 431 |
-
def encode(self, x, *args, **kwargs):
|
| 432 |
-
return x
|
| 433 |
-
|
| 434 |
-
def decode(self, x, *args, **kwargs):
|
| 435 |
-
return x
|
| 436 |
-
|
| 437 |
-
def quantize(self, x, *args, **kwargs):
|
| 438 |
-
if self.vq_interface:
|
| 439 |
-
return x, None, [None, None, None]
|
| 440 |
-
return x
|
| 441 |
-
|
| 442 |
-
def forward(self, x, *args, **kwargs):
|
| 443 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|