Spaces:
Runtime error
Runtime error
| import spaces | |
| import argparse, os, sys, glob | |
| import pathlib | |
| directory = pathlib.Path(os.getcwd()) | |
| print(directory) | |
| sys.path.append(str(directory)) | |
| import torch | |
| import numpy as np | |
| from omegaconf import OmegaConf | |
| from PIL import Image | |
| from tqdm import tqdm, trange | |
| from ldm.util import instantiate_from_config | |
| from ldm.models.diffusion.scheduling_lcm import LCMSampler | |
| from ldm.models.diffusion.plms import PLMSSampler | |
| import pandas as pd | |
| from torch.utils.data import DataLoader | |
| from tqdm import tqdm | |
| from icecream import ic | |
| from pathlib import Path | |
| import soundfile as sf | |
| import yaml | |
| import datetime | |
| from vocoder.bigvgan.models import VocoderBigVGAN | |
| import soundfile | |
| # from pytorch_memlab import LineProfiler,profile | |
| import gradio | |
| import gradio as gr | |
| def load_model_from_config(config, ckpt = None, verbose=True): | |
| model = instantiate_from_config(config.model) | |
| if ckpt: | |
| print(f"Loading model from {ckpt}") | |
| pl_sd = torch.load(ckpt, map_location="cpu") | |
| sd = pl_sd["state_dict"] | |
| m, u = model.load_state_dict(sd, strict=False) | |
| if len(m) > 0 and verbose: | |
| print("missing keys:") | |
| print(m) | |
| if len(u) > 0 and verbose: | |
| print("unexpected keys:") | |
| print(u) | |
| else: | |
| print(f"Note chat no ckpt is loaded !!!") | |
| model.cuda() | |
| model.eval() | |
| return model | |
| class GenSamples: | |
| def __init__(self,sampler,model,outpath,vocoder = None,save_mel = True,save_wav = True, original_inference_steps=None, ddim_steps=2, scale=5, num_samples=1) -> None: | |
| self.sampler = sampler | |
| self.model = model | |
| self.outpath = outpath | |
| if save_wav: | |
| assert vocoder is not None | |
| self.vocoder = vocoder | |
| self.save_mel = save_mel | |
| self.save_wav = save_wav | |
| self.channel_dim = self.model.channels | |
| self.original_inference_steps = original_inference_steps | |
| self.ddim_steps = ddim_steps | |
| self.scale = scale | |
| self.num_samples = num_samples | |
| def gen_test_sample(self,prompt,mel_name = None,wav_name = None):# prompt is {'ori_caption':’xxx‘,'struct_caption':'xxx'} | |
| uc = None | |
| record_dicts = [] | |
| # if os.path.exists(os.path.join(self.outpath,mel_name+f'_0.npy')): | |
| # return record_dicts | |
| if self.scale != 1.0: | |
| emptycap = {'ori_caption':self.num_samples*[""],'struct_caption':self.num_samples*[""]} | |
| uc = self.model.get_learned_conditioning(emptycap) | |
| for n in range(1):# trange(self.opt.n_iter, desc="Sampling"): | |
| for k,v in prompt.items(): | |
| prompt[k] = self.num_samples * [v] | |
| c = self.model.get_learned_conditioning(prompt)# shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding | |
| if self.channel_dim>0: | |
| shape = [self.channel_dim, 20, 312] # (z_dim, 80//2^x, 848//2^x) | |
| else: | |
| shape = [20, 312] | |
| samples_ddim, _ = self.sampler.sample(S=self.ddim_steps, | |
| conditioning=c, | |
| batch_size=self.num_samples, | |
| shape=shape, | |
| verbose=False, | |
| guidance_scale=self.scale, | |
| original_inference_steps=self.original_inference_steps | |
| ) | |
| x_samples_ddim = self.model.decode_first_stage(samples_ddim) | |
| for idx,spec in enumerate(x_samples_ddim): | |
| spec = spec.squeeze(0).cpu().numpy() | |
| record_dict = {'caption':prompt['ori_caption'][0]} | |
| if self.save_mel: | |
| mel_path = os.path.join(self.outpath,mel_name+f'_{idx}.npy') | |
| np.save(mel_path,spec) | |
| record_dict['mel_path'] = mel_path | |
| if self.save_wav: | |
| wav = self.vocoder.vocode(spec) | |
| wav_path = os.path.join(self.outpath,wav_name+f'_{idx}.wav') | |
| soundfile.write(wav_path, wav, 16000) | |
| record_dict['audio_path'] = wav_path | |
| record_dicts.append(record_dict) | |
| return record_dicts | |
| def infer(ori_prompt, ddim_steps, num_samples, scale, seed): | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| prompt = dict(ori_caption=ori_prompt,struct_caption=f'<{ori_prompt}& all>') | |
| config = OmegaConf.load("configs/audiolcm.yaml") | |
| # print("-------quick debug no load ckpt---------") | |
| # model = instantiate_from_config(config['model'])# for quick debug | |
| model = load_model_from_config(config, "./model/000184.ckpt") | |
| device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
| model = model.to(device) | |
| sampler = LCMSampler(model) | |
| os.makedirs("results/test", exist_ok=True) | |
| vocoder = VocoderBigVGAN("./model/vocoder",device) | |
| generator = GenSamples(sampler,model,"results/test",vocoder,save_mel = False,save_wav = True, original_inference_steps=config.model.params.num_ddim_timesteps, ddim_steps=ddim_steps, scale=scale, num_samples=num_samples) | |
| csv_dicts = [] | |
| with torch.no_grad(): | |
| with model.ema_scope(): | |
| wav_name = f'{prompt["ori_caption"].strip().replace(" ", "-")}' | |
| generator.gen_test_sample(prompt,wav_name=wav_name) | |
| print(f"Your samples are ready and waiting four you here: \nresults/test \nEnjoy.") | |
| return "results/test/"+wav_name+"_0.wav" | |
| def my_inference_function(text_prompt, ddim_steps, num_samples, scale, seed): | |
| file_path = infer(text_prompt, ddim_steps, num_samples, scale, seed) | |
| return file_path | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| gr.Markdown("## AudioLCM:Text-to-Audio Generation with Latent Consistency Models") | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Textbox(label="Prompt: Input your text here. ") | |
| run_button = gr.Button() | |
| with gr.Accordion("Advanced options", open=False): | |
| num_samples = gr.Slider( | |
| label="Select from audios num.This number control the number of candidates \ | |
| (e.g., generate three audios and choose the best to show you). A Larger value usually lead to \ | |
| better quality with heavier computation", minimum=1, maximum=10, value=1, step=1) | |
| ddim_steps = gr.Slider(label="ddim_steps", minimum=1, | |
| maximum=50, value=2, step=1) | |
| scale = gr.Slider( | |
| label="Guidance Scale:(Large => more relevant to text but the quality may drop)", minimum=0.1, maximum=8.0, value=5.0, step=0.1 | |
| ) | |
| seed = gr.Slider( | |
| label="Seed:Change this value (any integer number) will lead to a different generation result.", | |
| minimum=0, | |
| maximum=2147483647, | |
| step=1, | |
| value=44, | |
| ) | |
| with gr.Column(): | |
| outaudio = gr.Audio() | |
| run_button.click(fn=my_inference_function, inputs=[ | |
| prompt,ddim_steps, num_samples, scale, seed], outputs=[outaudio]) | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Examples( | |
| examples = [['An engine revving and then tires squealing',2,1,5,55],['A group of people laughing followed by farting',2,1,5,55], | |
| ['Duck quacking repeatedly',2,1,5,88],['A man speaks as birds chirp and dogs bark',2,1,5,55],['Continuous snoring of a person',2,1,5,55]], | |
| inputs = [prompt,ddim_steps, num_samples, scale, seed], | |
| outputs = [outaudio] | |
| ) | |
| with gr.Column(): | |
| pass | |
| demo.launch() | |
| # gradio_interface = gradio.Interface( | |
| # fn = my_inference_function, | |
| # inputs = "text", | |
| # outputs = "audio" | |
| # ) | |
| # gradio_interface.launch() |