Spaces:
Runtime error
Runtime error
| import os | |
| from pytorch_memlab import LineProfiler,profile | |
| import torch | |
| import torch.nn as nn | |
| import numpy as np | |
| import pytorch_lightning as pl | |
| from torch.optim.lr_scheduler import LambdaLR | |
| from einops import rearrange, repeat | |
| from contextlib import contextmanager | |
| from functools import partial | |
| from tqdm import tqdm | |
| from torchvision.utils import make_grid | |
| from pytorch_lightning.utilities.distributed import rank_zero_only | |
| from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config | |
| from ldm.modules.ema import LitEma | |
| from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution | |
| from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL | |
| from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like | |
| from ldm.models.diffusion.ddim import DDIMSampler | |
| from ldm.models.diffusion.ddpm import DDPM, disabled_train | |
| from omegaconf import ListConfig | |
| __conditioning_keys__ = {'concat': 'c_concat', | |
| 'crossattn': 'c_crossattn', | |
| 'adm': 'y'} | |
| class LatentDiffusion_audio(DDPM): | |
| """main class""" | |
| def __init__(self, | |
| first_stage_config, | |
| cond_stage_config, | |
| num_timesteps_cond=None, | |
| mel_dim=80, | |
| mel_length=848, | |
| cond_stage_key="image", | |
| cond_stage_trainable=False, | |
| concat_mode=True, | |
| cond_stage_forward=None, | |
| conditioning_key=None, | |
| scale_factor=1.0, | |
| scale_by_std=False, | |
| *args, **kwargs): | |
| self.num_timesteps_cond = default(num_timesteps_cond, 1) | |
| self.scale_by_std = scale_by_std | |
| assert self.num_timesteps_cond <= kwargs['timesteps'] | |
| # for backwards compatibility after implementation of DiffusionWrapper | |
| if conditioning_key is None: | |
| conditioning_key = 'concat' if concat_mode else 'crossattn' | |
| if cond_stage_config == '__is_unconditional__': | |
| conditioning_key = None | |
| ckpt_path = kwargs.pop("ckpt_path", None) | |
| ignore_keys = kwargs.pop("ignore_keys", []) | |
| super().__init__(conditioning_key=conditioning_key, *args, **kwargs) | |
| self.concat_mode = concat_mode | |
| self.mel_dim = mel_dim | |
| self.mel_length = mel_length | |
| self.cond_stage_trainable = cond_stage_trainable | |
| self.cond_stage_key = cond_stage_key | |
| try: | |
| self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 | |
| except: | |
| self.num_downs = 0 | |
| if not scale_by_std: | |
| self.scale_factor = scale_factor | |
| else: | |
| self.register_buffer('scale_factor', torch.tensor(scale_factor)) | |
| self.instantiate_first_stage(first_stage_config) | |
| self.instantiate_cond_stage(cond_stage_config) | |
| self.cond_stage_forward = cond_stage_forward | |
| self.clip_denoised = False | |
| self.bbox_tokenizer = None | |
| self.restarted_from_ckpt = False | |
| if ckpt_path is not None: | |
| self.init_from_ckpt(ckpt_path, ignore_keys) | |
| self.restarted_from_ckpt = True | |
| def make_cond_schedule(self, ): | |
| self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) | |
| ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() | |
| self.cond_ids[:self.num_timesteps_cond] = ids | |
| def on_train_batch_start(self, batch, batch_idx): | |
| # only for very first batch | |
| if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt: | |
| assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously' | |
| # set rescale weight to 1./std of encodings | |
| print("### USING STD-RESCALING ###") | |
| x = super().get_input(batch, self.first_stage_key) | |
| x = x.to(self.device) | |
| encoder_posterior = self.encode_first_stage(x) | |
| z = self.get_first_stage_encoding(encoder_posterior).detach()# get latent | |
| del self.scale_factor | |
| self.register_buffer('scale_factor', 1. / z.flatten().std())# 1/latent.std, get_first_stage_encoding returns self.scale_factor * latent | |
| print(f"setting self.scale_factor to {self.scale_factor}") | |
| print("### USING STD-RESCALING ###") | |
| # def on_train_epoch_start(self): | |
| # print("!!!!!!!!!!!!!!!!!!!!!!!!!!on_train_epoch_strat",self.trainer.train_dataloader.batch_sampler,hasattr(self.trainer.train_dataloader.batch_sampler,'set_epoch')) | |
| # if hasattr(self.trainer.train_dataloader.batch_sampler,'set_epoch'): | |
| # self.trainer.train_dataloader.batch_sampler.set_epoch(self.current_epoch) | |
| # return super().on_train_epoch_start() | |
| def register_schedule(self, | |
| given_betas=None, beta_schedule="linear", timesteps=1000, | |
| linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): | |
| super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s) | |
| self.shorten_cond_schedule = self.num_timesteps_cond > 1 | |
| if self.shorten_cond_schedule: | |
| self.make_cond_schedule() | |
| def instantiate_first_stage(self, config): | |
| model = instantiate_from_config(config) | |
| self.first_stage_model = model.eval() | |
| self.first_stage_model.train = disabled_train | |
| for param in self.first_stage_model.parameters(): | |
| param.requires_grad = False | |
| def instantiate_cond_stage(self, config): | |
| if not self.cond_stage_trainable: | |
| if config == "__is_first_stage__": | |
| print("Using first stage also as cond stage.") | |
| self.cond_stage_model = self.first_stage_model | |
| elif config == "__is_unconditional__": | |
| print(f"Training {self.__class__.__name__} as an unconditional model.") | |
| self.cond_stage_model = None | |
| else: | |
| model = instantiate_from_config(config) | |
| self.cond_stage_model = model.eval() | |
| self.cond_stage_model.train = disabled_train | |
| for param in self.cond_stage_model.parameters(): | |
| param.requires_grad = False | |
| else: | |
| assert config != '__is_first_stage__' | |
| assert config != '__is_unconditional__' | |
| model = instantiate_from_config(config) | |
| self.cond_stage_model = model | |
| def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False): | |
| denoise_row = [] | |
| for zd in tqdm(samples, desc=desc): | |
| denoise_row.append(self.decode_first_stage(zd.to(self.device), | |
| force_not_quantize=force_no_decoder_quantization)) | |
| n_imgs_per_row = len(denoise_row) | |
| if len(denoise_row[0].shape) == 3: | |
| denoise_row = [x.unsqueeze(1) for x in denoise_row] | |
| denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W | |
| denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w') | |
| denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') | |
| denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) | |
| return denoise_grid | |
| def get_first_stage_encoding(self, encoder_posterior): | |
| if isinstance(encoder_posterior, DiagonalGaussianDistribution): | |
| z = encoder_posterior.sample() | |
| elif isinstance(encoder_posterior, torch.Tensor): | |
| z = encoder_posterior | |
| else: | |
| raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") | |
| return self.scale_factor * z | |
| #@profile | |
| def get_learned_conditioning(self, c): | |
| if self.cond_stage_forward is None: | |
| if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): | |
| c = self.cond_stage_model.encode(c) | |
| if isinstance(c, DiagonalGaussianDistribution): | |
| c = c.mode() | |
| else: | |
| c = self.cond_stage_model(c) | |
| else: | |
| assert hasattr(self.cond_stage_model, self.cond_stage_forward) | |
| c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) | |
| return c | |
| def get_unconditional_conditioning(self, batch_size, null_label=None): | |
| if null_label is not None: | |
| xc = null_label | |
| if isinstance(xc, ListConfig): | |
| xc = list(xc) | |
| if isinstance(xc, dict) or isinstance(xc, list): | |
| c = self.get_learned_conditioning(xc) | |
| else: | |
| if hasattr(xc, "to"): | |
| xc = xc.to(self.device) | |
| c = self.get_learned_conditioning(xc) | |
| else: | |
| if self.cond_stage_key in ["class_label", "cls"]: | |
| xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device) | |
| return self.get_learned_conditioning(xc) | |
| else: | |
| raise NotImplementedError("todo") | |
| if isinstance(c, list): # in case the encoder gives us a list | |
| for i in range(len(c)): | |
| c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device) | |
| else: | |
| c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device) | |
| return c | |
| def meshgrid(self, h, w): | |
| y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1) | |
| x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1) | |
| arr = torch.cat([y, x], dim=-1) | |
| return arr | |
| def delta_border(self, h, w): | |
| """ | |
| :param h: height | |
| :param w: width | |
| :return: normalized distance to image border, | |
| wtith min distance = 0 at border and max dist = 0.5 at image center | |
| """ | |
| lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2) | |
| arr = self.meshgrid(h, w) / lower_right_corner | |
| dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0] | |
| dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0] | |
| edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0] | |
| return edge_dist | |
| def get_weighting(self, h, w, Ly, Lx, device): | |
| weighting = self.delta_border(h, w) | |
| weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"], | |
| self.split_input_params["clip_max_weight"], ) | |
| weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device) | |
| if self.split_input_params["tie_braker"]: | |
| L_weighting = self.delta_border(Ly, Lx) | |
| L_weighting = torch.clip(L_weighting, | |
| self.split_input_params["clip_min_tie_weight"], | |
| self.split_input_params["clip_max_tie_weight"]) | |
| L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device) | |
| weighting = weighting * L_weighting | |
| return weighting | |
| def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code | |
| """ | |
| :param x: img of size (bs, c, h, w) | |
| :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1]) | |
| """ | |
| bs, nc, h, w = x.shape | |
| # number of crops in image | |
| Ly = (h - kernel_size[0]) // stride[0] + 1 | |
| Lx = (w - kernel_size[1]) // stride[1] + 1 | |
| if uf == 1 and df == 1: | |
| fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) | |
| unfold = torch.nn.Unfold(**fold_params) | |
| fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params) | |
| weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype) | |
| normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap | |
| weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx)) | |
| elif uf > 1 and df == 1: | |
| fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) | |
| unfold = torch.nn.Unfold(**fold_params) | |
| fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf), | |
| dilation=1, padding=0, | |
| stride=(stride[0] * uf, stride[1] * uf)) | |
| fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2) | |
| weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype) | |
| normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap | |
| weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)) | |
| elif df > 1 and uf == 1: | |
| fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) | |
| unfold = torch.nn.Unfold(**fold_params) | |
| fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df), | |
| dilation=1, padding=0, | |
| stride=(stride[0] // df, stride[1] // df)) | |
| fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2) | |
| weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype) | |
| normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap | |
| weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)) | |
| else: | |
| raise NotImplementedError | |
| return fold, unfold, normalization, weighting | |
| def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False, | |
| cond_key=None, return_original_cond=False, bs=None): | |
| x = super().get_input(batch, k) | |
| if bs is not None: | |
| x = x[:bs] | |
| x = x.to(self.device) | |
| encoder_posterior = self.encode_first_stage(x) | |
| z = self.get_first_stage_encoding(encoder_posterior).detach() | |
| if self.model.conditioning_key is not None: | |
| if cond_key is None: | |
| cond_key = self.cond_stage_key | |
| if cond_key != self.first_stage_key: | |
| if cond_key in ['caption', 'coordinates_bbox']: | |
| xc = batch[cond_key] | |
| elif cond_key == 'class_label': | |
| xc = batch | |
| else: | |
| xc = super().get_input(batch, cond_key).to(self.device) | |
| else: | |
| xc = x | |
| if not self.cond_stage_trainable or force_c_encode: | |
| if isinstance(xc, dict) or isinstance(xc, list): | |
| # import pudb; pudb.set_trace() | |
| c = self.get_learned_conditioning(xc) | |
| else: | |
| c = self.get_learned_conditioning(xc.to(self.device)) | |
| else: | |
| c = xc | |
| if bs is not None: | |
| c = c[:bs] | |
| # Testing # | |
| if cond_key == 'masked_image': | |
| mask = super().get_input(batch, "mask") | |
| cc = torch.nn.functional.interpolate(mask, size=c.shape[-2:]) # [B, 1, 10, 106] | |
| c = torch.cat((c, cc), dim=1) # [B, 5, 10, 106] | |
| # Testing # | |
| if self.use_positional_encodings: | |
| pos_x, pos_y = self.compute_latent_shifts(batch) | |
| ckey = __conditioning_keys__[self.model.conditioning_key] | |
| c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y} | |
| else: | |
| c = None | |
| xc = None | |
| if self.use_positional_encodings: | |
| pos_x, pos_y = self.compute_latent_shifts(batch) | |
| c = {'pos_x': pos_x, 'pos_y': pos_y} | |
| out = [z, c] | |
| if return_first_stage_outputs: | |
| xrec = self.decode_first_stage(z) | |
| out.extend([x, xrec]) | |
| if return_original_cond: | |
| out.append(xc) | |
| return out | |
| def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): | |
| if predict_cids: | |
| if z.dim() == 4: | |
| z = torch.argmax(z.exp(), dim=1).long() | |
| z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) | |
| z = rearrange(z, 'b h w c -> b c h w').contiguous() | |
| z = 1. / self.scale_factor * z | |
| if isinstance(self.first_stage_model, VQModelInterface): | |
| return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) | |
| else: | |
| return self.first_stage_model.decode(z) | |
| # same as above but without decorator | |
| def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): | |
| if predict_cids: | |
| if z.dim() == 4: | |
| z = torch.argmax(z.exp(), dim=1).long() | |
| z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) | |
| z = rearrange(z, 'b h w c -> b c h w').contiguous() | |
| z = 1. / self.scale_factor * z | |
| if isinstance(self.first_stage_model, VQModelInterface): | |
| return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) | |
| else: | |
| return self.first_stage_model.decode(z) | |
| def encode_first_stage(self, x): | |
| return self.first_stage_model.encode(x) | |
| def shared_step(self, batch, **kwargs): | |
| x, c = self.get_input(batch, self.first_stage_key) | |
| loss = self(x, c) | |
| return loss | |
| def test_step(self,batch,batch_idx): | |
| cond = batch[self.cond_stage_key] # * self.test_repeat | |
| cond = self.get_learned_conditioning(cond) # c: string -> [B, T, Context_dim] | |
| batch_size = len(cond) | |
| enc_emb = self.sample(cond,batch_size,timesteps=self.num_timesteps)# shape = [batch_size,self.channels,self.mel_dim,self.mel_length] | |
| xrec = self.decode_first_stage(enc_emb) | |
| # reconstructions = (xrec + 1)/2 # to mel scale | |
| # test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path) | |
| # savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class') | |
| # if not os.path.exists(savedir): | |
| # os.makedirs(savedir) | |
| # file_names = batch['f_name'] | |
| # nfiles = len(file_names) | |
| # reconstructions = reconstructions.cpu().numpy().squeeze(1) # squuze channel dim | |
| # for k in range(reconstructions.shape[0]): | |
| # b,repeat = k % nfiles, k // nfiles | |
| # vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num | |
| # v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:] | |
| # save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}_{repeat}.npy')# the num_th caption, the repeat_th repitition | |
| # np.save(save_img_path,reconstructions[b]) | |
| return None | |
| def forward(self, x, c, *args, **kwargs): | |
| t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() | |
| if self.model.conditioning_key is not None: | |
| assert c is not None | |
| if self.cond_stage_trainable: | |
| c = self.get_learned_conditioning(c) # c: string -> [B, T, Context_dim] | |
| if self.shorten_cond_schedule: # TODO: drop this option | |
| tc = self.cond_ids[t].to(self.device) | |
| c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) | |
| return self.p_losses(x, c, t, *args, **kwargs) | |
| def apply_model(self, x_noisy, t, cond, w_cond=None, return_ids=False): | |
| if isinstance(cond, dict): | |
| # hybrid case, cond is exptected to be a dict | |
| key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn' | |
| cond = {key: cond} | |
| else: | |
| if not isinstance(cond, list): | |
| cond = [cond] | |
| if self.model.conditioning_key == "concat": | |
| key = "c_concat" | |
| elif self.model.conditioning_key == "crossattn": | |
| key = "c_crossattn" | |
| else: | |
| key = "c_film" | |
| cond = {key: cond} | |
| x_recon = self.model(x_noisy, t, **cond, w_cond=w_cond) | |
| if isinstance(x_recon, tuple) and not return_ids: | |
| return x_recon[0] | |
| else: | |
| return x_recon | |
| def _predict_eps_from_xstart(self, x_t, t, pred_xstart): | |
| return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \ | |
| extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) | |
| def _prior_bpd(self, x_start): | |
| """ | |
| Get the prior KL term for the variational lower-bound, measured in | |
| bits-per-dim. | |
| This term can't be optimized, as it only depends on the encoder. | |
| :param x_start: the [N x C x ...] tensor of inputs. | |
| :return: a batch of [N] KL values (in bits), one per batch element. | |
| """ | |
| batch_size = x_start.shape[0] | |
| t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) | |
| qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) | |
| kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) | |
| return mean_flat(kl_prior) / np.log(2.0) | |
| def p_losses(self, x_start, cond, t, noise=None): | |
| noise = default(noise, lambda: torch.randn_like(x_start)) | |
| x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
| model_output = self.apply_model(x_noisy, t, cond) | |
| loss_dict = {} | |
| prefix = 'train' if self.training else 'val' | |
| if self.parameterization == "x0": | |
| target = x_start | |
| elif self.parameterization == "eps": | |
| target = noise | |
| else: | |
| raise NotImplementedError() | |
| mean_dims = list(range(1,len(target.shape))) | |
| loss_simple = self.get_loss(model_output, target, mean=False).mean(dim=mean_dims) | |
| loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()}) | |
| logvar_t = self.logvar[t].to(self.device) | |
| loss = loss_simple / torch.exp(logvar_t) + logvar_t | |
| # loss = loss_simple / torch.exp(self.logvar) + self.logvar | |
| if self.learn_logvar: | |
| loss_dict.update({f'{prefix}/loss_gamma': loss.mean()}) | |
| loss_dict.update({'logvar': self.logvar.data.mean()}) | |
| loss = self.l_simple_weight * loss.mean() | |
| loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=mean_dims) | |
| loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() | |
| loss_dict.update({f'{prefix}/loss_vlb': loss_vlb}) | |
| loss += (self.original_elbo_weight * loss_vlb) | |
| loss_dict.update({f'{prefix}/loss': loss}) | |
| return loss, loss_dict | |
| def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False, | |
| return_x0=False, score_corrector=None, corrector_kwargs=None): | |
| t_in = t | |
| model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) | |
| if score_corrector is not None: | |
| assert self.parameterization == "eps" | |
| model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs) | |
| if return_codebook_ids: | |
| model_out, logits = model_out | |
| if self.parameterization == "eps": | |
| x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) | |
| elif self.parameterization == "x0": | |
| x_recon = model_out | |
| else: | |
| raise NotImplementedError() | |
| if clip_denoised: | |
| x_recon.clamp_(-1., 1.) | |
| if quantize_denoised: | |
| x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) | |
| model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) | |
| if return_codebook_ids: | |
| return model_mean, posterior_variance, posterior_log_variance, logits | |
| elif return_x0: | |
| return model_mean, posterior_variance, posterior_log_variance, x_recon | |
| else: | |
| return model_mean, posterior_variance, posterior_log_variance | |
| def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, | |
| return_codebook_ids=False, quantize_denoised=False, return_x0=False, | |
| temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None): | |
| b, *_, device = *x.shape, x.device | |
| outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, | |
| return_codebook_ids=return_codebook_ids, | |
| quantize_denoised=quantize_denoised, | |
| return_x0=return_x0, | |
| score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) | |
| if return_codebook_ids: | |
| raise DeprecationWarning("Support dropped.") | |
| model_mean, _, model_log_variance, logits = outputs | |
| elif return_x0: | |
| model_mean, _, model_log_variance, x0 = outputs | |
| else: | |
| model_mean, _, model_log_variance = outputs | |
| noise = noise_like(x.shape, device, repeat_noise) * temperature | |
| if noise_dropout > 0.: | |
| noise = torch.nn.functional.dropout(noise, p=noise_dropout) | |
| # no noise when t == 0 | |
| nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) | |
| if return_codebook_ids: | |
| return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1) | |
| if return_x0: | |
| return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 | |
| else: | |
| return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
| def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False, | |
| img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0., | |
| score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None, | |
| log_every_t=None): | |
| if not log_every_t: | |
| log_every_t = self.log_every_t | |
| timesteps = self.num_timesteps | |
| if batch_size is not None: | |
| b = batch_size if batch_size is not None else shape[0] | |
| shape = [batch_size] + list(shape) | |
| else: | |
| b = batch_size = shape[0] | |
| if x_T is None: | |
| img = torch.randn(shape, device=self.device) | |
| else: | |
| img = x_T | |
| intermediates = [] | |
| if cond is not None: | |
| if isinstance(cond, dict): | |
| cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else | |
| list(map(lambda x: x[:batch_size], cond[key])) for key in cond} | |
| else: | |
| cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] | |
| if start_T is not None: | |
| timesteps = min(timesteps, start_T) | |
| iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation', | |
| total=timesteps) if verbose else reversed( | |
| range(0, timesteps)) | |
| if type(temperature) == float: | |
| temperature = [temperature] * timesteps | |
| for i in iterator: | |
| ts = torch.full((b,), i, device=self.device, dtype=torch.long) | |
| if self.shorten_cond_schedule: | |
| assert self.model.conditioning_key != 'hybrid' | |
| tc = self.cond_ids[ts].to(cond.device) | |
| cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) | |
| img, x0_partial = self.p_sample(img, cond, ts, | |
| clip_denoised=self.clip_denoised, | |
| quantize_denoised=quantize_denoised, return_x0=True, | |
| temperature=temperature[i], noise_dropout=noise_dropout, | |
| score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) | |
| if mask is not None: | |
| assert x0 is not None | |
| img_orig = self.q_sample(x0, ts) | |
| img = img_orig * mask + (1. - mask) * img | |
| if i % log_every_t == 0 or i == timesteps - 1: | |
| intermediates.append(x0_partial) | |
| if callback: callback(i) | |
| if img_callback: img_callback(img, i) | |
| return img, intermediates | |
| def p_sample_loop(self, cond, shape, return_intermediates=False, | |
| x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False, | |
| mask=None, x0=None, img_callback=None, start_T=None, | |
| log_every_t=None): | |
| if not log_every_t: | |
| log_every_t = self.log_every_t | |
| device = self.betas.device | |
| b = shape[0] | |
| if x_T is None: | |
| img = torch.randn(shape, device=device) | |
| else: | |
| img = x_T | |
| intermediates = [img] | |
| if timesteps is None: | |
| timesteps = self.num_timesteps | |
| if start_T is not None: | |
| timesteps = min(timesteps, start_T) | |
| iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed( | |
| range(0, timesteps)) | |
| if mask is not None: | |
| assert x0 is not None | |
| assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match | |
| for i in iterator: | |
| ts = torch.full((b,), i, device=device, dtype=torch.long) | |
| if self.shorten_cond_schedule: | |
| assert self.model.conditioning_key != 'hybrid' | |
| tc = self.cond_ids[ts].to(cond.device) | |
| cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) | |
| img = self.p_sample(img, cond, ts, | |
| clip_denoised=self.clip_denoised, | |
| quantize_denoised=quantize_denoised) | |
| if mask is not None: | |
| img_orig = self.q_sample(x0, ts) | |
| img = img_orig * mask + (1. - mask) * img | |
| if i % log_every_t == 0 or i == timesteps - 1: | |
| intermediates.append(img) | |
| if callback: callback(i) | |
| if img_callback: img_callback(img, i) | |
| if return_intermediates: | |
| return img, intermediates | |
| return img | |
| def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, | |
| verbose=True, timesteps=None, quantize_denoised=False, | |
| mask=None, x0=None, shape=None,**kwargs): | |
| if shape is None: | |
| if self.channels > 0: | |
| shape = (batch_size, self.channels, self.mel_dim, self.mel_length) | |
| else: | |
| shape = (batch_size, self.mel_dim, self.mel_length) | |
| if cond is not None: | |
| if isinstance(cond, dict): | |
| cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else | |
| list(map(lambda x: x[:batch_size], cond[key])) for key in cond} | |
| else: | |
| cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] | |
| return self.p_sample_loop(cond, | |
| shape, | |
| return_intermediates=return_intermediates, x_T=x_T, | |
| verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised, | |
| mask=mask, x0=x0) | |
| def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs): | |
| if ddim: | |
| ddim_sampler = DDIMSampler(self) | |
| shape = (self.channels, self.mel_dim, self.mel_length) if self.channels > 0 else (self.mel_dim, self.mel_length) | |
| samples, intermediates = ddim_sampler.sample(ddim_steps,batch_size, | |
| shape,cond,verbose=False,**kwargs) | |
| else: | |
| samples, intermediates = self.sample(cond=cond, batch_size=batch_size, | |
| return_intermediates=True,**kwargs) | |
| return samples, intermediates | |
| def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, | |
| quantize_denoised=True, inpaint=False, plot_denoise_rows=False, plot_progressive_rows=True, | |
| plot_diffusion_rows=True, **kwargs): | |
| use_ddim = ddim_steps is not None | |
| log = dict() | |
| z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, | |
| return_first_stage_outputs=True, | |
| force_c_encode=True, | |
| return_original_cond=True, | |
| bs=N) # z is latent,c is condition embedding, xc is condition(caption) list | |
| N = min(x.shape[0], N) | |
| n_row = min(x.shape[0], n_row) | |
| log["inputs"] = x if len(x.shape)==4 else x.unsqueeze(1) | |
| log["reconstruction"] = xrec if len(xrec.shape)==4 else xrec.unsqueeze(1) | |
| if self.model.conditioning_key is not None: | |
| if hasattr(self.cond_stage_model, "decode") and self.cond_stage_key != "masked_image": | |
| xc = self.cond_stage_model.decode(c) | |
| log["conditioning"] = xc | |
| elif self.cond_stage_key == "masked_image": | |
| log["mask"] = c[:, -1, :, :][:, None, :, :] | |
| xc = self.cond_stage_model.decode(c[:, :self.cond_stage_model.embed_dim, :, :]) | |
| log["conditioning"] = xc | |
| elif self.cond_stage_key in ["caption"]: | |
| pass | |
| # xc = log_txt_as_img((256, 256), batch["caption"]) | |
| # log["conditioning"] = xc | |
| elif self.cond_stage_key == 'class_label': | |
| xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) | |
| log['conditioning'] = xc | |
| elif isimage(xc): | |
| log["conditioning"] = xc | |
| if plot_diffusion_rows: | |
| # get diffusion row | |
| diffusion_row = list() | |
| z_start = z[:n_row] | |
| for t in range(self.num_timesteps): | |
| if t % self.log_every_t == 0 or t == self.num_timesteps - 1: | |
| t = repeat(torch.tensor([t]), '1 -> b', b=n_row) | |
| t = t.to(self.device).long() | |
| noise = torch.randn_like(z_start) | |
| z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) | |
| diffusion_row.append(self.decode_first_stage(z_noisy)) | |
| if len(diffusion_row[0].shape) == 3: | |
| diffusion_row = [x.unsqueeze(1) for x in diffusion_row] | |
| diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W | |
| diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') | |
| diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') | |
| diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) | |
| log["diffusion_row"] = diffusion_grid | |
| if sample: | |
| # get denoise row | |
| with self.ema_scope("Plotting"): | |
| samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, | |
| ddim_steps=ddim_steps,eta=ddim_eta) | |
| # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) | |
| x_samples = self.decode_first_stage(samples) | |
| log["samples"] = x_samples if len(x_samples.shape)==4 else x_samples.unsqueeze(1) | |
| if plot_denoise_rows: | |
| denoise_grid = self._get_denoise_row_from_list(z_denoise_row) | |
| log["denoise_row"] = denoise_grid | |
| if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance( | |
| self.first_stage_model, IdentityFirstStage): | |
| # also display when quantizing x0 while sampling | |
| with self.ema_scope("Plotting Quantized Denoised"): | |
| samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, | |
| ddim_steps=ddim_steps,eta=ddim_eta, | |
| quantize_denoised=True) | |
| # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True, | |
| # quantize_denoised=True) | |
| x_samples = self.decode_first_stage(samples.to(self.device)) | |
| log["samples_x0_quantized"] = x_samples if len(x_samples.shape)==4 else x_samples.unsqueeze(1) | |
| if inpaint: | |
| # make a simple center square | |
| b, h, w = z.shape[0], z.shape[2], z.shape[3] | |
| mask = torch.ones(N, h, w).to(self.device) | |
| # zeros will be filled in | |
| mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. | |
| mask = mask[:, None, ...] | |
| with self.ema_scope("Plotting Inpaint"): | |
| samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta, | |
| ddim_steps=ddim_steps, x0=z[:N], mask=mask) | |
| x_samples = self.decode_first_stage(samples.to(self.device)) | |
| log["samples_inpainting"] = x_samples | |
| log["mask_inpainting"] = mask | |
| # outpaint | |
| mask = 1 - mask | |
| with self.ema_scope("Plotting Outpaint"): | |
| samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta, | |
| ddim_steps=ddim_steps, x0=z[:N], mask=mask) | |
| x_samples = self.decode_first_stage(samples.to(self.device)) | |
| log["samples_outpainting"] = x_samples | |
| log["mask_outpainting"] = mask | |
| if plot_progressive_rows: | |
| with self.ema_scope("Plotting Progressives"): | |
| shape = (self.channels, self.mel_dim, self.mel_length) if self.channels > 0 else (self.mel_dim, self.mel_length) | |
| img, progressives = self.progressive_denoising(c, | |
| shape=shape, | |
| batch_size=N) | |
| prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation") | |
| log["progressive_row"] = prog_row | |
| if return_keys: | |
| if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: | |
| return log | |
| else: | |
| return {key: log[key] for key in return_keys} | |
| return log | |
| def configure_optimizers(self): | |
| lr = self.learning_rate | |
| params = list(self.model.parameters()) | |
| if self.cond_stage_trainable: | |
| print(f"{self.__class__.__name__}: Also optimizing conditioner params!") | |
| params = params + list(self.cond_stage_model.parameters()) | |
| if self.learn_logvar: | |
| print('Diffusion model optimizing logvar') | |
| params.append(self.logvar) | |
| opt = torch.optim.AdamW(params, lr=lr) | |
| if self.use_scheduler: | |
| assert 'target' in self.scheduler_config | |
| scheduler = instantiate_from_config(self.scheduler_config) | |
| print("Setting up LambdaLR scheduler...") | |
| scheduler = [ | |
| { | |
| 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule), | |
| 'interval': 'step', | |
| 'frequency': 1 | |
| }] | |
| return [opt], scheduler | |
| return opt | |