Spaces:
Runtime error
Runtime error
| """ | |
| 与autoencoder.py的区别在于,autoencoder.py是(B,1,80,T) ->(B,C,80/8,T/8),现在vae要变成(B,80,T) -> (B,80/downsample_c,T/downsample_t) | |
| """ | |
| import os | |
| import torch | |
| import torch.nn as nn | |
| import pytorch_lightning as pl | |
| import torch.nn.functional as F | |
| from contextlib import contextmanager | |
| from packaging import version | |
| import numpy as np | |
| from ldm.modules.distributions.distributions import DiagonalGaussianDistribution | |
| from torch.optim.lr_scheduler import LambdaLR | |
| from ldm.util import instantiate_from_config | |
| class AutoencoderKL(pl.LightningModule): | |
| def __init__(self, | |
| embed_dim, | |
| ddconfig, | |
| lossconfig, | |
| ckpt_path=None, | |
| ignore_keys=[], | |
| image_key="image", | |
| monitor=None, | |
| ): | |
| super().__init__() | |
| self.image_key = image_key | |
| self.encoder = Encoder1D(**ddconfig) | |
| self.decoder = Decoder1D(**ddconfig) | |
| self.loss = instantiate_from_config(lossconfig) | |
| assert ddconfig["double_z"] | |
| self.quant_conv = torch.nn.Conv1d(2*ddconfig["z_channels"], 2*embed_dim, 1) | |
| self.post_quant_conv = torch.nn.Conv1d(embed_dim, ddconfig["z_channels"], 1) | |
| self.embed_dim = embed_dim | |
| if monitor is not None: | |
| self.monitor = monitor | |
| if ckpt_path is not None: | |
| self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) | |
| def init_from_ckpt(self, path, ignore_keys=list()): | |
| sd = torch.load(path, map_location="cpu")["state_dict"] | |
| keys = list(sd.keys()) | |
| for k in keys: | |
| for ik in ignore_keys: | |
| if k.startswith(ik): | |
| print("Deleting key {} from state_dict.".format(k)) | |
| del sd[k] | |
| self.load_state_dict(sd, strict=False) | |
| print(f"AutoencoderKL Restored from {path} Done") | |
| def encode(self, x): | |
| h = self.encoder(x) | |
| moments = self.quant_conv(h) | |
| posterior = DiagonalGaussianDistribution(moments) | |
| return posterior | |
| def decode(self, z): | |
| z = self.post_quant_conv(z) | |
| dec = self.decoder(z) | |
| return dec | |
| def forward(self, input, sample_posterior=True): | |
| posterior = self.encode(input) | |
| if sample_posterior: | |
| z = posterior.sample() | |
| else: | |
| z = posterior.mode() | |
| dec = self.decode(z) | |
| return dec, posterior | |
| def get_input(self, batch, k): | |
| x = batch[k] | |
| assert len(x.shape) == 3 | |
| x = x.to(memory_format=torch.contiguous_format).float() | |
| return x | |
| def training_step(self, batch, batch_idx, optimizer_idx): | |
| inputs = self.get_input(batch, self.image_key) | |
| # print(inputs.shape) | |
| reconstructions, posterior = self(inputs) | |
| if optimizer_idx == 0: | |
| # train encoder+decoder+logvar | |
| aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, | |
| last_layer=self.get_last_layer(), split="train") | |
| self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
| self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) | |
| return aeloss | |
| if optimizer_idx == 1: | |
| # train the discriminator | |
| discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, | |
| last_layer=self.get_last_layer(), split="train") | |
| self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
| self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False) | |
| return discloss | |
| def validation_step(self, batch, batch_idx): | |
| inputs = self.get_input(batch, self.image_key) | |
| reconstructions, posterior = self(inputs) | |
| aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step, | |
| last_layer=self.get_last_layer(), split="val") | |
| discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step, | |
| last_layer=self.get_last_layer(), split="val") | |
| self.log("val/rec_loss", log_dict_ae["val/rec_loss"]) | |
| self.log_dict(log_dict_ae) | |
| self.log_dict(log_dict_disc) | |
| return self.log_dict | |
| def test_step(self, batch, batch_idx): | |
| inputs = self.get_input(batch, self.image_key)# inputs shape:(b,mel_len,T) | |
| reconstructions, posterior = self(inputs)# reconstructions:(b,mel_len,T) | |
| mse_loss = torch.nn.functional.mse_loss(reconstructions,inputs) | |
| self.log('test/mse_loss',mse_loss) | |
| test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path) | |
| savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class') | |
| if batch_idx == 0: | |
| print(f"save_path is: {savedir}") | |
| if not os.path.exists(savedir): | |
| os.makedirs(savedir) | |
| print(f"save_path is: {savedir}") | |
| file_names = batch['f_name'] | |
| # print(f"reconstructions.shape:{reconstructions.shape}",file_names) | |
| # reconstructions = (reconstructions + 1)/2 # to mel scale | |
| reconstructions = reconstructions.cpu().numpy() # squuze channel dim | |
| for b in range(reconstructions.shape[0]): | |
| vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num | |
| v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:] | |
| save_img_path = os.path.join(savedir, f'{v_n}.npy') # f'{v_n}_sample_{num}.npy' f'{v_n}.npy' | |
| np.save(save_img_path,reconstructions[b]) | |
| return None | |
| def configure_optimizers(self): | |
| lr = self.learning_rate | |
| opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ | |
| list(self.decoder.parameters())+ | |
| list(self.quant_conv.parameters())+ | |
| list(self.post_quant_conv.parameters()), | |
| lr=lr, betas=(0.5, 0.9)) | |
| opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), | |
| lr=lr, betas=(0.5, 0.9)) | |
| return [opt_ae, opt_disc], [] | |
| def get_last_layer(self): | |
| return self.decoder.conv_out.weight | |
| def log_images(self, batch, only_inputs=False, **kwargs): | |
| log = dict() | |
| x = self.get_input(batch, self.image_key) | |
| x = x.to(self.device) | |
| if not only_inputs: | |
| xrec, posterior = self(x) | |
| log["samples"] = self.decode(torch.randn_like(posterior.sample())).unsqueeze(1) # (b,1,H,W) | |
| log["reconstructions"] = xrec.unsqueeze(1) | |
| log["inputs"] = x.unsqueeze(1) | |
| return log | |
| def Normalize(in_channels, num_groups=32): | |
| return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
| def nonlinearity(x): | |
| # swish | |
| return x*torch.sigmoid(x) | |
| class ResnetBlock1D(nn.Module): | |
| def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, | |
| dropout, temb_channels=512,kernel_size = 3): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| out_channels = in_channels if out_channels is None else out_channels | |
| self.out_channels = out_channels | |
| self.use_conv_shortcut = conv_shortcut | |
| self.norm1 = Normalize(in_channels) | |
| self.conv1 = torch.nn.Conv1d(in_channels, | |
| out_channels, | |
| kernel_size=kernel_size, | |
| stride=1, | |
| padding=kernel_size//2) | |
| if temb_channels > 0: | |
| self.temb_proj = torch.nn.Linear(temb_channels, | |
| out_channels) | |
| self.norm2 = Normalize(out_channels) | |
| self.dropout = torch.nn.Dropout(dropout) | |
| self.conv2 = torch.nn.Conv1d(out_channels, | |
| out_channels, | |
| kernel_size=kernel_size, | |
| stride=1, | |
| padding=kernel_size//2) | |
| if self.in_channels != self.out_channels: | |
| if self.use_conv_shortcut: | |
| self.conv_shortcut = torch.nn.Conv1d(in_channels, | |
| out_channels, | |
| kernel_size=kernel_size, | |
| stride=1, | |
| padding=kernel_size//2) | |
| else: | |
| self.nin_shortcut = torch.nn.Conv1d(in_channels, | |
| out_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0) | |
| def forward(self, x, temb): | |
| h = x | |
| h = self.norm1(h) | |
| h = nonlinearity(h) | |
| h = self.conv1(h) | |
| if temb is not None: | |
| h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None] | |
| h = self.norm2(h) | |
| h = nonlinearity(h) | |
| h = self.dropout(h) | |
| h = self.conv2(h) | |
| if self.in_channels != self.out_channels: | |
| if self.use_conv_shortcut: | |
| x = self.conv_shortcut(x) | |
| else: | |
| x = self.nin_shortcut(x) | |
| return x+h | |
| class AttnBlock1D(nn.Module): | |
| def __init__(self, in_channels): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.norm = Normalize(in_channels) | |
| self.q = torch.nn.Conv1d(in_channels, | |
| in_channels, | |
| kernel_size=1) | |
| self.k = torch.nn.Conv1d(in_channels, | |
| in_channels, | |
| kernel_size=1) | |
| self.v = torch.nn.Conv1d(in_channels, | |
| in_channels, | |
| kernel_size=1) | |
| self.proj_out = torch.nn.Conv1d(in_channels, | |
| in_channels, | |
| kernel_size=1) | |
| def forward(self, x): | |
| h_ = x | |
| h_ = self.norm(h_) | |
| q = self.q(h_) | |
| k = self.k(h_) | |
| v = self.v(h_) | |
| # compute attention | |
| b,t,c = q.shape | |
| q = q.permute(0,2,1) # b,t,c | |
| w_ = torch.bmm(q,k) # b,t,t w[b,i,j]=sum_c q[b,i,c]k[b,c,j] | |
| # if still 2d attn (q:b,hw,c ,k:b,c,hw -> w_:b,hw,hw) | |
| w_ = w_ * (int(t)**(-0.5)) | |
| w_ = torch.nn.functional.softmax(w_, dim=2) | |
| # attend to values | |
| w_ = w_.permute(0,2,1) # b,t,t (first t of k, second of q) | |
| h_ = torch.bmm(v,w_) # b,c,t (t of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] | |
| h_ = self.proj_out(h_) | |
| return x+h_ | |
| class Upsample1D(nn.Module): | |
| def __init__(self, in_channels, with_conv): | |
| super().__init__() | |
| self.with_conv = with_conv | |
| if self.with_conv: | |
| self.conv = torch.nn.Conv1d(in_channels, | |
| in_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| def forward(self, x): | |
| x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") # support 3D tensor(B,C,T) | |
| if self.with_conv: | |
| x = self.conv(x) | |
| return x | |
| class Downsample1D(nn.Module): | |
| def __init__(self, in_channels, with_conv): | |
| super().__init__() | |
| self.with_conv = with_conv | |
| if self.with_conv: | |
| # no asymmetric padding in torch conv, must do it ourselves | |
| self.conv = torch.nn.Conv1d(in_channels, | |
| in_channels, | |
| kernel_size=3, | |
| stride=2, | |
| padding=0) | |
| def forward(self, x): | |
| if self.with_conv: | |
| pad = (0,1) | |
| x = torch.nn.functional.pad(x, pad, mode="constant", value=0) | |
| x = self.conv(x) | |
| else: | |
| x = torch.nn.functional.avg_pool1d(x, kernel_size=2, stride=2) | |
| return x | |
| class Encoder1D(nn.Module): | |
| def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, | |
| attn_layers = [],down_layers = [], dropout=0.0, resamp_with_conv=True, in_channels, | |
| z_channels, double_z=True,kernel_size=3, **ignore_kwargs): | |
| """ out_ch is only used in decoder,not used here | |
| """ | |
| super().__init__() | |
| self.ch = ch | |
| self.temb_ch = 0 | |
| self.num_layers = len(ch_mult) | |
| self.num_res_blocks = num_res_blocks | |
| self.in_channels = in_channels | |
| print(f"downsample rates is {2**len(down_layers)}") | |
| self.down_layers = down_layers | |
| self.attn_layers = attn_layers | |
| self.conv_in = torch.nn.Conv1d(in_channels, | |
| self.ch, | |
| kernel_size=kernel_size, | |
| stride=1, | |
| padding=kernel_size//2) | |
| in_ch_mult = (1,)+tuple(ch_mult) | |
| self.in_ch_mult = in_ch_mult | |
| # downsampling | |
| self.down = nn.ModuleList() | |
| for i_level in range(self.num_layers): | |
| block = nn.ModuleList() | |
| attn = nn.ModuleList() | |
| block_in = ch*in_ch_mult[i_level] | |
| block_out = ch*ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks): | |
| block.append(ResnetBlock1D(in_channels=block_in, | |
| out_channels=block_out, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| kernel_size=kernel_size)) | |
| block_in = block_out | |
| if i_level in attn_layers: | |
| # print(f"add attn in layer:{i_level}") | |
| attn.append(AttnBlock1D(block_in)) | |
| down = nn.Module() | |
| down.block = block | |
| down.attn = attn | |
| if i_level in down_layers: | |
| down.downsample = Downsample1D(block_in, resamp_with_conv) | |
| self.down.append(down) | |
| # middle | |
| self.mid = nn.Module() | |
| self.mid.block_1 = ResnetBlock1D(in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| kernel_size=kernel_size) | |
| self.mid.attn_1 = AttnBlock1D(block_in) | |
| self.mid.block_2 = ResnetBlock1D(in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| kernel_size=kernel_size) | |
| # end | |
| self.norm_out = Normalize(block_in)# GroupNorm | |
| self.conv_out = torch.nn.Conv1d(block_in, | |
| 2*z_channels if double_z else z_channels, | |
| kernel_size=kernel_size, | |
| stride=1, | |
| padding=kernel_size//2) | |
| def forward(self, x): | |
| # timestep embedding | |
| temb = None | |
| # downsampling | |
| hs = [self.conv_in(x)] | |
| for i_level in range(self.num_layers): | |
| for i_block in range(self.num_res_blocks): | |
| h = self.down[i_level].block[i_block](hs[-1], temb) | |
| if len(self.down[i_level].attn) > 0: | |
| h = self.down[i_level].attn[i_block](h) | |
| hs.append(h) | |
| if i_level in self.down_layers: | |
| hs.append(self.down[i_level].downsample(hs[-1])) | |
| # middle | |
| h = hs[-1] | |
| h = self.mid.block_1(h, temb) | |
| h = self.mid.attn_1(h) | |
| h = self.mid.block_2(h, temb) | |
| # end | |
| h = self.norm_out(h) | |
| h = nonlinearity(h) | |
| h = self.conv_out(h) | |
| return h | |
| class Decoder1D(nn.Module): | |
| def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, | |
| attn_layers = [],down_layers = [], dropout=0.0,kernel_size=3, resamp_with_conv=True, in_channels, | |
| z_channels, give_pre_end=False, tanh_out=False, **ignorekwargs): | |
| super().__init__() | |
| self.ch = ch | |
| self.temb_ch = 0 | |
| self.num_layers = len(ch_mult) | |
| self.num_res_blocks = num_res_blocks | |
| self.in_channels = in_channels | |
| self.give_pre_end = give_pre_end | |
| self.tanh_out = tanh_out | |
| self.down_layers = [i+1 for i in down_layers] # each downlayer add one | |
| print(f"upsample rates is {2**len(down_layers)}") | |
| # compute in_ch_mult, block_in and curr_res at lowest res | |
| in_ch_mult = (1,)+tuple(ch_mult) | |
| block_in = ch*ch_mult[self.num_layers-1] | |
| # z to block_in | |
| self.conv_in = torch.nn.Conv1d(z_channels, | |
| block_in, | |
| kernel_size=kernel_size, | |
| stride=1, | |
| padding=kernel_size//2) | |
| # middle | |
| self.mid = nn.Module() | |
| self.mid.block_1 = ResnetBlock1D(in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout) | |
| self.mid.attn_1 = AttnBlock1D(block_in) | |
| self.mid.block_2 = ResnetBlock1D(in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout) | |
| # upsampling | |
| self.up = nn.ModuleList() | |
| for i_level in reversed(range(self.num_layers)): | |
| block = nn.ModuleList() | |
| attn = nn.ModuleList() | |
| block_out = ch*ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks+1): | |
| block.append(ResnetBlock1D(in_channels=block_in, | |
| out_channels=block_out, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout)) | |
| block_in = block_out | |
| if i_level in attn_layers: | |
| # print(f"add attn in layer:{i_level}") | |
| attn.append(AttnBlock1D(block_in)) | |
| up = nn.Module() | |
| up.block = block | |
| up.attn = attn | |
| if i_level in self.down_layers: | |
| up.upsample = Upsample1D(block_in, resamp_with_conv) | |
| self.up.insert(0, up) # prepend to get consistent order | |
| # end | |
| self.norm_out = Normalize(block_in) | |
| self.conv_out = torch.nn.Conv1d(block_in, | |
| out_ch, | |
| kernel_size=kernel_size, | |
| stride=1, | |
| padding=kernel_size//2) | |
| def forward(self, z): | |
| #assert z.shape[1:] == self.z_shape[1:] | |
| self.last_z_shape = z.shape | |
| # timestep embedding | |
| temb = None | |
| # z to block_in | |
| h = self.conv_in(z) | |
| # middle | |
| h = self.mid.block_1(h, temb) | |
| h = self.mid.attn_1(h) | |
| h = self.mid.block_2(h, temb) | |
| # upsampling | |
| for i_level in reversed(range(self.num_layers)): | |
| for i_block in range(self.num_res_blocks+1): | |
| h = self.up[i_level].block[i_block](h, temb) | |
| if len(self.up[i_level].attn) > 0: | |
| h = self.up[i_level].attn[i_block](h) | |
| if i_level in self.down_layers: | |
| h = self.up[i_level].upsample(h) | |
| # end | |
| if self.give_pre_end: | |
| return h | |
| h = self.norm_out(h) | |
| h = nonlinearity(h) | |
| h = self.conv_out(h) | |
| if self.tanh_out: | |
| h = torch.tanh(h) | |
| return h |