Spaces:
Runtime error
Runtime error
| import gradio | |
| def infer(prompt): | |
| config = OmegaConf.load("configs/audiolcm.yaml") | |
| # print("-------quick debug no load ckpt---------") | |
| # model = instantiate_from_config(config['model'])# for quick debug | |
| model = load_model_from_config(config, | |
| "../logs/2024-04-21T14-50-11_text2music-audioset-nonoverlap/epoch=000184.ckpt") | |
| device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
| model = model.to(device) | |
| sampler = LCMSampler(model) | |
| os.makedirs("results/test", exist_ok=True) | |
| vocoder = VocoderBigVGAN("../vocoder/logs/bigvnat16k93.5w", device) | |
| generator = GenSamples(sampler, model, "results/test", vocoder, save_mel=False, save_wav=True, | |
| original_inference_steps=config.model.params.num_ddim_timesteps) | |
| csv_dicts = [] | |
| with torch.no_grad(): | |
| with model.ema_scope(): | |
| wav_name = f'{prompt.strip().replace(" ", "-")}' | |
| generator.gen_test_sample(prompt, wav_name=wav_name) | |
| print(f"Your samples are ready and waiting four you here: \nresults/test \nEnjoy.") | |
| def my_inference_function(prompt_oir): | |
| prompt = {'ori_caption':prompt_oir,'struct_caption':prompt_oir} | |
| file_path = infer(prompt) | |
| return "test.wav" | |
| gradio_interface = gradio.Interface( | |
| fn = my_inference_function, | |
| inputs = "text", | |
| outputs = "audio" | |
| ) | |
| gradio_interface.launch() | |